
CSCI 1321 January 20, 2011

Slide 1

Administrivia

• Reminder: Reading assignments will be on the “lecture topics and

assignments” Web page. Ideally you will read before class!

Slide 2

“Object Orientation”?

• A “programming paradigm” — contrast with procedural programming,

functional programming, etc.

• No accepted-by-all definition, but most definitions mention encapsulation:

– Data and functionality grouped together into “objects”.

– Some data/functionality is hidden.

• Origins in simulation/modeling, where the goal is to model complex systems

consisting of many (real-world) objects.



CSCI 1321 January 20, 2011

Slide 3

What’s An Object?

• Object — set of data (attributes) and associated functions (methods,

behaviors, operations) that can act on data.

• Objects interact by calling each other’s methods, or by sending each other

messages.

• Often makes sense to have many similar objects — hence “classes”.

Slide 4

What’s a Class?

• Can be thought of as a blueprint for objects of a given type; individual objects

are “instances” of the class.

• Defines attributes and methods each object will have (instance

variables/methods), attributes and methods shared by all objects of a class

(class variables/methods).

• “Public interface” — attributes and methods visible from outside the class.



CSCI 1321 January 20, 2011

Slide 5

Java and Object Orientation

• Java is not purely object-oriented — also includes “primitive types” for

efficiency — but it’s much more strongly object-oriented than a hybrid

language such as C++.

• Java programs consist of definitions of classes. (No free-standing functions

like the ones in C.)

• Java variables (except primitives) are references to objects, classes define

types.

• Classes, attributes, methods have varying “visibilities” (from public to private).

Slide 6

Program Structure

• In Java, everything (variables and code) is part of a class. Typically have only

one class per source code file (exception is inner/nested classes — more

about them later).

• Any class can have a main method that can be launched by the runtime

system (more about that later).



CSCI 1321 January 20, 2011

Slide 7

Defining a Class

• Each class is like a blueprint for objects of a particular kind, and can include:

– Variables — instance (one copy per object) or static (one copy shared by

all objects).

– Methods — similar to C functions, but can be static or non-static (“instance

methods”). Instance methods are “invoked on an object’.

– Classes (more later).

• Variables and methods can be public, private, etc. Good practice to

expose only what needs to be exposed (so variables are usually private).

Slide 8

Naming Conventions

• Java library classes and methods follow these conventions:

– If it’s mixed-case and starts with uppercase, it’s a class.

– If it’s mixed-case and starts with lowercase, it’s a variable or method.

– If it’s all uppercase, it’s a constant.

• You should follow them too, so your code will be easier for experienced Java

programmers to read.



CSCI 1321 January 20, 2011

Slide 9

Compiling and Running Programs — Java Versus C/C++

• With C/C++, your program (“source code”) is transformed by a compiler

into . . .

“object code” (different for different processors), which is combined with

library object code to produce . . .

an “executable” (different for different operating systems) that can be run like

other applications.

• With Java, your program (source code) is transformed by a compiler into . . .

“byte code” (same on any processor), which is executed by . . .

a “Java virtual machine” (which has access to library byte code).

Slide 10

Tools

• Java programs are text, so you can write them with a text editor and compile

and run them from the command line. (In fact I often do.)

• However, many professional programmers use an IDE (Integrated

Development Environment), so we will too. For most of the semester we will

use Eclipse, which is a free open-source tool written in Java, so you should

be able to install a copy on your home machine if you like. (Versions seem to

be available for Windows, Linux, and Mac OS X.) But in some ways it’s too

helpful, so we will start using BlueJ.



CSCI 1321 January 20, 2011

Slide 11

Example(s)

• Let’s first write the traditional “hello world” program using PAD-I-style tools

(javac and java to compile and execute programs).

• Then let’s do it again in BlueJ (bluej from the command line), and also

start writing another simple class.

(Notice that in BlueJ you have to start by creating a “project” — very typical of

IDEs.)

• (Now you should know enough to start trying examples as you do the reading

— and you should!)

Slide 12

Minute Essay

• Was there anything today that was particularly unclear?

• If you have programmed in Java before, what tool(s) did you use?


