
CSCI 1321 February 8, 2011

Slide 1

Administrivia

• (None?)

Slide 2

Packages and Importing

• Packages are simply a way of grouping related code and providing restricted

scope for class names. Package names are (somewhat) hierarchical, with

levels separated by dots — look at Java library API for examples.

• For classes in java.lang and current package reference using the class

name only (e.g., System). For other classes, can use full name (e.g.,

java.util.Vector), or use import. (import looks like

#include, but works differently.)



CSCI 1321 February 8, 2011

Slide 3

Packages, Continued

• You can define your own packages. Convention is to start with your

e-mail/Web address, in reverse order (e.g., Dr. Lewis’s framework is

edu.trinity.cs.gamecore). (For simple throwaway programs you

might use simpler names.)

• Packages and filesystem hierarchy are related — for an example, create a

package in BlueJ/Eclipse and then use another tool to look at the resulting

directories and files.

Slide 4

Another Example

• Let’s start sketching another example — Account class representing bank

accounts.

• What variables seem useful? what methods?



CSCI 1321 February 8, 2011

Slide 5

UML Class Diagrams

• “Unified Modeling Language” — formal graphic representation of software

analysis and design.

Many types of diagrams, some of which you’ll probably encounter in other

courses. Tools exist for drawing them, but worth noting that they were

designed to be whiteboard-friendly.

• We will mainly use class diagrams:

– Box representing a class has name, attributes, operations.

– Different kinds of arrows showing relationships among classes and

interfaces.

Slide 6

Inheritance (Short Version)

• Given a class, it can be useful to define specialized versions — “subclasses”.

• A subclass inherits attributes and operations from its superclass (which can in

turn have a superclass . . . ).

• Subclasses also form “subtypes” — e.g., if PersonalAccount is a

subclass of Account, can use a PersonalAccount anywhere we

need an Account.



CSCI 1321 February 8, 2011

Slide 7

Polymorphism (Short Version)

• “Many shapes” — something that works with many types.

• E.g., a function that works on Accounts should work on

PersonalAccounts, BusinessAccounts, . . .

Slide 8

Inheritance and Code Reuse

• If class Account defines

private String accountID;

public void deposit();

then if BusinessAccount is a subclass of Account,

BusinessAccount also has variable accountID and method

deposit.

• This can be a good way to reduce code duplication.

• If it’s not what you want, subclasses can “override” methods (or variables —

but this is not usually a good idea).

• Or a superclass can leave methods unimplemented; subclasses must then

define (maybe differently for different classes). E.g., for Account, if we

make withdraw abstract, each subclass must provide its own code.



CSCI 1321 February 8, 2011

Slide 9

Inheritance and Subtypes

• In the bank-account example, class Account defines a type, and

BusinessAccount and PersonalAccount are subtypes.

Anywhere we need a Account, we can use a BusinessAccount —

e.g.,

Account s = new BusinessAccount();

(but not BusinessAccount s = new Account();)

• So we could have an array of Accounts, whose elements could be

BusinessAccounts or PersonalAccounts.

• Let’s write more code for that example . . .

Slide 10

Inheritance Versus Interfaces

• What if you don’t need/want the superclass to provide any code? you just

want it to define a “contract” that all subclasses must meet (i.e., a list of

methods they must provide?) then you want a Java interface.

• In the Account example, we could define a PaysInterest interface

with method addMonthlyInterest. This would let us decide for each

type of account whether it should pay interest — e.g.,

BusinessAccount and some subclasses of PersonalAccount.

• A class can “implement” as many interfaces as you like.

(This helps if you want a class to inherit from multiple classes — Java, unlike

some languages (e.g., C++), doesn’t allow that because of possible

confusion/ambiguity, but you can fake it by implementing multiple interfaces.)



CSCI 1321 February 8, 2011

Slide 11

Interfaces and Types

• Interfaces also define types. So if BusinessAccount implements

interface PaysInterest, we can use a Account anywhere a

PaysInterest is required.

PaysInterest p = new BusinessAccount();

• This is “inclusion polymorphism” — and is what will allow your project code to

plug neatly into Dr. Lewis’s framework. (The framework is written in terms of

interfaces such as Block and Screen; your classes will implement those

interfaces.)

Slide 12

Minute Essay

• In class we started writing a PaysInterest interface with a method

payMonthlyInterest. What changes would you need to make to

BusinessAccount to include this method? do you need more variables

in the class, or does the method need parameters, or what? and what would

the code look like?



CSCI 1321 February 8, 2011

Slide 13

Minute Essay Answer

• There are actually several things you might want to think about first . . .

• Is the rate the same every time you pay interest (monthly?), or does it change

from month to month? (If it stays the same, maybe it should be a variable

within the object; if it changes, maybe it should be a parameter to the method.)

• Is the rate the same for all accounts, or different for different accounts? if the

former, it could be a class (static) variable.


