
CSCI 1321 March 3, 2011

Slide 1

Administrivia

• Midterm scheduled for next time. Reschedule? (If so, also reschedule Quiz 3.)

• Reminder: Homework 2 code due today (midnight). Homework 3 design due

Tuesday, code Thursday.

Slide 2

A Little About Homework 3

• In this homework you start writing code for your player, to replace the stick

figure in the starter game.

• Key parts of this assignment are making the player

– interact with different kinds of blocks.

– move in response to keyboard or mouse input from human player.

(If these don’t apply to your game, talk to me about whether there are

reasonable substitutes.)

For design phase, you just need to describe this interaction.



CSCI 1321 March 3, 2011

Slide 3

Homework 3, Continued

• Player defines some constants you should use.

• You will implement KeyListener or one/both of the mouse-listener

interfaces. When you do this, the framework will deliver key and/or mouse

“events” to you.

• Most logic will go in update, getUpdateTime, and the listener

methods.

• A general comment: If you find yourself looking up something like the ASCII

value of a character, or the value of one of the game framework’s constants

— stop. There is probably an easier and more Javaesque way to do what you

want.

Slide 4

Sorting and Searching, Continued

• Recall the problems — “sorting” to put an array (or list) in order (based on

some ordering), “searching” to search for an element in an array (or list).

• Sorting algorithms include simple-but-slow (bubble sort, selection sort,

insertion sort), faster-but-more-complex (to be discussed later).

• Searching algorithms include sequential search, binary search (faster but

required sorted array/list).

• What do “slower” and “faster” mean here? Defined in terms of “order of

magnitude” of algorithm.



CSCI 1321 March 3, 2011

Slide 5

Order of Magnitude of Algorithms

• Idea is to estimate how work (execution time) for algorithm varies as a

function of “problem size” (e.g., for sorting, size of array). (Similar idea can be

applied to how much memory is required.)

• Usually do this by counting something that represents most of the “work” in

the algorithm and varies with problem size (e.g., for sorting, how many

comparisons).

Slide 6

Order of Magnitude of Algorithms, Continued

• Informally, O(N) means work/time is proportional to N (problem size).

O(N2) means . . . ?

(Compare aN and bN2 as N increases, for different values of a and b. bN2

larger for larger enough N .)

• Formal definition (from CSCI 1323): g(n) is O(f(n)) if there are positive

constants n0 and c such that for n ≥ n0,

g(n) ≤ cf(n)



CSCI 1321 March 3, 2011

Slide 7

Order of Magnitude of Sorts and Searches

• Usually we count comparison (and sometimes also swaps).

• How many comparisons for simple-but-slow sorts?

• How many for sequential and binary search?

Slide 8

Order of Magnitude of Sorts and Searches, Continued

• Bubble sort: For N elements, first pass through the array makes N − 1

comparisons, next pass makes N − 2, etc. Total is (N − 1)(N − 2)/2 —

which in order-of-magnitude terms is O(N2).

• Selection sort and insertion sort are also O(N2).

• Quicksort and mergesort are O(N log N). (More about this later.)

• Sequential search is O(N), binary search O(log N).



CSCI 1321 March 3, 2011

Slide 9

Polymorphic Sorting and Searching

• Sort/search algorithms are (mostly) independent of the kind of data being

sorted — all of the comparison-based sorts just require that a “total ordering”

relation on the data (for any two distinct elements a and b, a < b or b < a).

(“Comparison-based”? yes, as opposed to, e.g., radix sort or counting sort

described last time.)

• So we’d like to be able to turn the algorithm into code just once, and let it

operate on different kinds of data — “polymorphic sort”. C’s qsort is

polymorphic, though the mechanics are a bit ugly. Java provides nicer

mechanisms — for objects anyway.

Slide 10

Polymorphic Sorting and Searching in Java

• Java library interface Comparable is helpful in writing comparison-based

sorts. (Look at its API. Example code as time permits.)

• But what if you sometimes want to sort data one way and sometimes

another? With C’s qsort you can pass in a function pointer. In Java? You

can’t do that. What you can do (very typical) is create an object whose

purpose is to contain the desired code. Here, we want something to hold our

compareTo method. Simplest to illustrate using a library class (next slide).



CSCI 1321 March 3, 2011

Slide 11

Sorting and Searching Arrays in Java

• Writing your own sorting routines is pedagogically useful, but in practice you

would probably use something from Java library.

• Arrays class has some useful methods. The ones for objects require either

a class that provides a compareTo method, or a Comparator object

that defines the ordering you want.

Slide 12

Minute Essay

• For some well-known problems, the best known algorithms are O(N !)

(N factorial). Why is this a problem (or is it?).



CSCI 1321 March 3, 2011

Slide 13

Minute Essay Answer

• Because N ! increases so fast that it severely limits the size (N ) of the

problem that can be solved in a reasonable amount of time.


