
CSCI 1321 April 5, 2011

Slide 1

Administrivia

• Reminder: Homework 5 design due today, code Thursday.

• Homework 6 due dates posted (next week).

Slide 2

Priority Queue — Review

• Value — list of elements, of some type we can put in order.

• Operations:

– Add element.

– Remove element with lowest (or highest) value.

– “Is empty?”

(Look at game framework PriorityQueue interface for a slightly

different, but equivalent, list. You will write one of these for Homework 5.)

• How to implement? (List kept in order by value seems best. Finish code.)



CSCI 1321 April 5, 2011

Slide 3

GUIs and Event-Driven Programming

• In PAD I (and in most previous in-class examples this semester) we usually

focus on programs with simple text-based input and output — a basically

synchronous interaction with the user.

• Programs with GUIs, though, are typically somewhat different — the main

program (which is sometimes hidden in library code) is often just a loop that

waits for keyboard/mouse input delivered by the program’s environment

(operating system, graphical environment, window manager, etc.).

• This leads to an “event-driven” programming model that can seem rather

different from what’s used for text-based programs. (But it’s rather like what

you’re doing in the game project.)

Slide 4

Java GUI Libraries

• Java has evolved over its short lifetime, and sometimes there seems to be

more than one way to do something. One example — resizable arrays

(Vector versus ArrayList). Another — two groups of GUI-related

classes:

– Abstract Window Toolkit (AWT) — older, “look and feel” consistent with

platform’s windowing system.

– Swing — newer, more extensive, look and feel more aimed at being

consistent across platforms. Makes use of AWT components.

• Many, many classes to build GUIs:

– GUI elements —- buttons, labels, text boxes, menus, etc., etc., etc., etc.

– “Containers” to group elements and arrange them for display.

– “Listeners” and “events” to allow program to respond to user input.



CSCI 1321 April 5, 2011

Slide 5

Some GUI Classes

• Component — base class.

• Container – component that can contain other components.

• JFrame — window with titlebar, etc.; usually the “main” window for an

application.

• JDialog — popup dialog box.

• JPanel – very simple container, useful for grouping things, providing

custom graphics.

• JMenuBar.

• Etc., etc., etc., etc. — far more than we can cover in this course! Read the

API. Some classes have links to online tutorials too.

Slide 6

Using the GUI Classes — Appearance

• When using predefined components, key issue is how they’re grouped using

containers and how things are laid out within each container.

• Preferred method for laying things out — layout manager, which places

elements in some reasonable way, does something reasonable if container is

resized.

– Simple layouts include FlowLayout, GridLayout,

BorderLayout, BoxLayout.

– GridBagLayout provides more control, but is more complex.

Some of them expand components to fit, others lay them out at their minimum

size. See API and tutorials for more info.

• Often makes sense to group elements hierarchically — JPanel is useful for

that.



CSCI 1321 April 5, 2011

Slide 7

Using the GUI Classes — Behavior

• Runtime system (JVM) translates each user action (keyboard or mouse input)

into an “event” and then calls method(s) in “event listener” objects.

• So, to tell the runtime system what should happen when, e.g., a JButton is

clicked, call button’s addActionListener with an object listener

that implements ActionListener interface. Now when the button is

clicked, listener’s actionPerformed method is called.

• Several approaches to defining listener objects. One is to have “main” class

implement required interface. Another is to use anonymous inner classes.

Slide 8

Examples

• (Examples as time permits.)

• Before going further, we need what seems like a detour . . .



CSCI 1321 April 5, 2011

Slide 9

Sidebar: Concurrency Basics

• Textbooks on operating systems talk about “processes” — “threads of control”

executing “concurrently”, i.e., at the same time (in fact or in effect).

Each is a sequence of steps, like the (sequential) programs you’ve written.

• How does it work? Conceptually, all processes not waiting for something

(such as I/O) run at the same time. Operating system basically simulates one

CPU per thread, with real CPU(s) switching back and forth among them.

• This turns out to be a good mental model for managing applications, and

activities of the O/S itself. It also means you could get better performance

with more than one CPU/core — can potentially have more than one thing

actually running at the same time.

• But there are some potential pitfalls, involving interaction among

processes/threads.

Slide 10

Sidebar Continued

• Two basic models — one in which the concurrently-executing things don’t

share (much) memory and one in which they do. Sharing memory has

benefits but also some serious potential pitfalls (“race conditions”).

• Java provides some support for both models, but at this point its support for

the shared-memory model is more relevant, because . . . (to be continued).



CSCI 1321 April 5, 2011

Slide 11

Minute Essay

• None — quiz.


