
CSCI 1321 April 19, 2011

Slide 1

Administrivia

• Reminder: Homework 6 code due today.

• Homework 7 due dates next week.

• Quizzes 5 and 6 will be take-home not-for-credit. Solutions will be online.

• Sample programs page has additional examples of ways to use

multithreading (for the interested?).

Slide 2

Recursion — Overview

• Basic approach:

– Identify “base case” — something you can solve directly.

– Figure out how to decompose non-base cases into “smaller” problems,

and apply algorithm to smaller problems.

• How to think about “does it work?”

– Does it work for base case(s)?

– Assuming recursive calls work, does it work for other cases?

– Does every recursive call get you at least one step closer to a base case?

• Implementation — conceptually (and usually in fact) involves a stack of

calls-in-progress.

• Can be slower than iteration (though sometimes not), but can also be much

easier to understand.



CSCI 1321 April 19, 2011

Slide 3

Recursion — Simple Examples

• Factorial function.

• Function to compute Fibonacci numbers (very slow!).

Slide 4

Recursion — More Examples

• Linked list implementation (if time permits).

• Quicksort — pick “pivot” element, split array into elements less than pivot and

elements greater than pivot, and sort recursively. Why does this work?

• Mergesort — split array (or list) into two pieces of equal size, sort recursively,

merge. Why does this work?



CSCI 1321 April 19, 2011

Slide 5

Trees — Mathematical Definition

• One definition —

– Set of nodes, one called root.

– Set of edges (directed connections between nodes).

– Root has no incoming edges; all other nodes have exactly one (from

parent).

– Each node can have 0 or more outgoing edges (to children — if none, leaf

node).

• Another, recursive definition — tree is one node connected by edges to 0 or

more subtrees.

• This is a general tree — e.g., to represent hierarchy such as filesystem.

Slide 6

Implementing Trees

• Define Node data structure, analogous to linked list, with reference to data

and references to children (array or linked list or . . . ).

• Easier if number of children is limited to two, and this turns out to be

sufficiently useful in practice — “binary tree”. Then Node consists of pointers

to data and left and right subtrees.



CSCI 1321 April 19, 2011

Slide 7

Tree Traversals

• For linked lists we defined a way to visit all elements — “iterator”. Is there

something analogous for trees?

• Well — three orders that are easy to define and implement:

– Preorder — root first.

– Postorder — root last.

– Inorder — leftmost subtree first, then root, then remaining subtrees.

(Admittedly a little weird for non-binary trees.)

• (Sketch some code for at least one of these.)

Slide 8

Sorted Binary Trees (Binary Search Trees)

• Key property — everything in the left subtree is smaller than the root, and

everything in the right is bigger.

• Why is this useful? If you want a data structure to hold a collection that will be

searched frequently, what are the choices? and how fast is each to search?

to modify (insert/remove)? Compare approximate times for arrays (sorted and

unsorted), linked lists (sorted and unsorted), sorted binary tree.

• (Sketch some code for add and find. remove is trickier . . . )



CSCI 1321 April 19, 2011

Slide 9

Minute Essay

• None — sign in.


