Administrivia

- None.

Slide 1

Exhaustive Proof / Proof By Cases

- Idea here is to prove by considering each "case" separately. Only works if there are finitely many. (Recall result from propositional logic that allows this.)
- Simple example: To show that for all integers x with $0 \leq x \leq 4, x^{2}<20$, five cases to consider.

Slide 2

- Slightly more complex example: To show something for all integers, can consider two cases, odd integers and even integers. (Aside: How shall we define "even"? Is zero even?)
- Much more complex example: Computer-assisted proof of 4-color map theorem (1976, used almost 2000 separate cases).

Direct Proof

- Idea here is to show $P \rightarrow Q$ like we've been doing - assume P and derive Q - but less formally.
- Example: Show that for integers p and m, if p is even and m is positive, p^{m} is even.

Slide 3

Proof by Contraposition

- Idea is based on a derived rule from propositional logic: If $Q^{\prime} \rightarrow P^{\prime}$, then $P \rightarrow Q$.
So if proving $P \rightarrow Q$ is difficult, we can try proving $Q^{\prime} \rightarrow P^{\prime}$ instead.
- Example: Show that if m and n are integers and $m+n$ is even, either m

Slide 4 and n are both even or m and n are both odd.

Proof By Contradiction

- Idea is based on another rule we could prove using propositional logic: If $\left(P \wedge Q^{\prime}\right) \rightarrow$ false, then $P \rightarrow Q$.

So if proving $P \rightarrow Q$ is difficult, we can try assuming $P \wedge Q^{\prime}$ and "deriving a contradiction".

Slide 5
Note that sometimes P is just true.

- Example: Show that $\sqrt{2}$ is irrational.

Minute Essay

- Find a counterexample for the following conjecture: "If x is an integer, \sqrt{x} is an integer."
- To show that there is no largest prime, we could assume P and derive a contradiction. What is P ? (You don't have to show there's no largest prime, just say what P is.)
- (Reminder: Homework 2 due.)

