
CSCI 1323 February 13, 2004

Slide 1

Administrivia

• Reminder: Homework 3 due Monday.

Slide 2

Proving Program Correctness

• Once you’ve written a program, want to have some confidence that “it works”.

• What do you mean “it works”? Informally? Formally, “meets its specification”

(more later).

• How do you show it works? As a grad-school colleague wrote:

To reduce the number of errors in a program, or to increase one’s confidence

in a program, one can test the program on a given test suite. If the program is

observed to behave correctly for these test cases, the program is shipped to

the customer. One then hopes there will be other cases that customers try for

which the program also behaves correctly.

• Is there another way to “increase your confidence” in the program? “Formal

methods” . . .



CSCI 1323 February 13, 2004

Slide 3

Proving Program Correctness, Continued

• Idea of formal methods is to give a mathematical proof that a program does

what it’s supposed to do.

• For non-trivial programs, this is usually a lot of work, though if the program is

“important” enough, might be worthwhile.

• We will do mostly trivial examples — mostly because they’re all we can do in

the time we have. Keep in mind, though:

– How to make this practical, and/or how to have it done by a smart

program, are subjects of ongoing research.

– In my opinion/experience, applying these ideas informally helps you

“reason about programs” — which is how careful programmers work,

consciously or not.

Slide 4

Program Specifications

• Before we can prove that a program “works”, we have to define what that

means — “specification”.

• For many programs (the ones we’ll talk about here), we care that the program

produces the right output for all allowed inputs. So we can write a

specification in terms of “precondition” and “postcondition”. E.g., for a function

sqrt that takes a double x as input and returns a double, we could

have:

Precondition: x ≥ 0.

Postcondition: For return value y, y ≥ 0 and y2 = x.

• This is trivial? Consider the following proposed specification for a sorting

function with two inputs A (array of integers) and n (size of A).

Precondition: A is of size n, n ≥ 0.

Postcondition: (∀i)(((0 < i < n) → A[i− 1] ≤ A[i])



CSCI 1323 February 13, 2004

Slide 5

Program Specifications and Correctness

• Once we have a precondition and postcondition, “the program is correct”

means “if we start in a state where the precondition is true, we end in a state

where the postcondition is true.”

• We’ll define rules for establishing correctness for assignment, if/then/else,

sequential composition, and “while” loops. That, it turns out, is enough.

Slide 6

Specifications — Formal View

• If we have

– X — set of input variables for program P

– P (X) — set of output variables for P

– Q(X) — precondition

– R(X,P (X)) — postcondition

then we define “P is correct” to be

(∀X)(Q(X) → R(X,P (X)))

• Traditionally write this using a “Hoare triple” (C. A. R. Hoare, 1968 CACM

article)

{ Q } P { R }

with implicit quantification over all values of inputs.



CSCI 1323 February 13, 2004

Slide 7

How to Prove that Program Meets its Specification?

• First observe that we can build up all programs from a few basics:

– Assignment.

– Conditional (if/then/else).

– Sequential composition.

– Loops (while).

• So we just (?!) have to give rules for these basics, and then in principle . . .

Slide 8

Sequential Composition

• “Sequential composition”? Fancy name for “first do this, then do that.”

• Rule is: For two programs P1 and P2

If we have { Q } P1 { R1 }
and { R1 } P2 { R }
then we can derive { Q } P1;P2 { R }

• This seems plausible, no? and we could prove it with predicate logic.



CSCI 1323 February 13, 2004

Slide 9

Assignment

• Oddly enough, this one is tricky.

• Rule is this:

We can derive { R1 } x := e { R2 }
where R1 is R2 with all occurrences of x replaced by e.

• This makes sense, no? If something is true about e, and then we assign e to

x, then the something is true about x.

Slide 10

Strengthening Preconditions, Weakening Postconditions

• Two more rules:

If we have { Q } P { R }
then for “stronger” precondition Q1 (i.e., Q1 → Q)

we can derive { Q1 } P { R }
and for “weaker” postcondition R1 (i.e., R → R1)

we can derive { Q } P { R1 }

• This also should make sense, and we could prove it. Also, it can be helpful in

applying the rule for sequential composition when the postcondition /

precondition pairs don’t quite match up.



CSCI 1323 February 13, 2004

Slide 11

Conditionals

• Putting off loops for now, we need one more rule, for if/then/else.

• Rule is: If we have program S of the form

if B then

P1

else

P2

end if

and we have { (Q ∧ B) } P1 { R }
and { (Q ∧ B′) } P2 { R }
then we can derive { Q } S { R }

• Again, this should make sense, and we could prove it.

Slide 12

Minute Essay

• Did you recognize the last problem on the quiz? (It should have looked

familiar from the homework.)

• If we want to have { R } x := x ∗ 2 { x < 16 }, what should R be?


