
CSCI 1323 February 20, 2004

Slide 1

Administrivia

• Next homework coming soon (watch your mail).

Slide 2

Minute Essay From Last Lecture

• Question: Given program P as follows:

if x ≥ 0 then

x := x ∗ 2

else

x := −x
end if

We can show that { x 6= 0 } P { x 6= 0 }
by showing that two other Hoare triples are true — what are they? (No need

to say why they’re true, just what they are.)

• Answer? (Also, how would you structure a full proof?)

• A little advice about writing up proofs: The idea is to present a logical

argument that a human reader (a classmate, e.g.) can follow. Putting in some

prose often helps!



CSCI 1323 February 20, 2004

Slide 3

Program Correctness and Loops, Review

• Our rule is this: For program P of the form

while B do

P1

end while

if we also have a “loop invariant” Q, such that

{ Q ∧ B } P1 { Q }

then we can derive

{ Q } P { Q ∧ B′ }

• Strictly speaking, we also have to prove that the loop does terminate — can

do this by finding an integer function (“metric”) that decreases every time

through and when not positive means B is false.

Slide 4

Program Correctness and Loops, Continued

• Things to notice about loop invariants:

– They’re not unique — could come up with many “invariants” for a given

loop. (This is true about preconditions in general.)

– The goal is to find one that’s “useful” — if true at end of the loop with loop

test false, helps us prove desired postcondition.

– Sometimes helps to think in terms of “what do the variables mean?”

– Writing down a loop invariant can help (e.g., to avoid off-by-one errors)

even if you don’t do a complete formal proof.

• Example — silly program to compute z = x× y by repeated addition:

i := 0; z := 0;

while i < x do

z := z + y; i := i+ 1

end while



CSCI 1323 February 20, 2004

Slide 5

Program Correctness and Loops, Continued

• Another example — Euclid’s algorithm for finding GCD (greatest common

divisor, a.k.a. largest common factor) of a and b:

i := a; j := b;

while j 6= 0 do

q := i/j; r := i%j;

i := j; j := r;

end while

At end, i = gcd(a, b). It does?! Yes, and we can prove it, even if we don’t

quite understand why.

Proposed invariant (using book’s subscripting notation):

gcd(in, jn) = gcd(a, b)

Slide 6

Proofs of Program Correctness, Recap

• Many examples we looked at are trivial — mostly because they’re all we can

do in the time we have. Keep in mind, though:

– How to make this practical, and/or how to have it done by a smart

program, are subjects of ongoing research.

– In my opinion/experience, applying these ideas informally helps you

“reason about programs”. (“What do you know about the program

variables at this point?” “What is this variable supposed to represent, and

does the code support that?”)

– Similar ideas are very useful in reasoning about concurrent algorithms,

which otherwise can be very tricky!



CSCI 1323 February 20, 2004

Slide 7

Minute Essay

• How are you doing with the reading so far? Does the textbook explain things

in a way that makes sense to you? Do you try working through some/all of the

practice problems, and if so does that help?


