Administrivia

- Reminder: Quiz 3 Wednesday.
- Homework 4 on Web. Due next Monday.

Slide 1

Recursion and Recursive Definitions

- Idea of recursion closely related to idea of induction - "build on previous smaller cases".
- First look at recursive definitions. To define something recursively:
- Define one or more "base cases".

Slide 2 - Define remaining cases in terms of other ("smaller") cases.

Recursive Definitions - Sequences

- A silly example:

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide 3

Try writing down some terms.

- Another example:

$$
\begin{aligned}
& S(1)=1 \\
& S(2)=1 \\
& S(n)=S(n-2)+S(n-1), \text { for } n>2
\end{aligned}
$$

Try writing down some terms. Anyone recognize this one?

Recursive Definitions - Sets

- Example - could define the set of "integer arithmetic expressions" like this:
- Integers are expressions.
- If E and F are integer arithmetic expressions, so are $(E+F)$, $(E-F),(E \times F)$, and (E / F).

Slide $4 \quad$ Examples?

Notice that this allows us to generate only "sensible" expressions. Notice also that it's a bit more restrictive than we might like.

- We could write similar definitions for the wffs of propositional and predicate logic.

Recursive Definitions - Operations

- Example - factorial.
- Example - multiplication of non-negative integers, defined in terms of addition.
- Example - (integer) division of a non-negative integer by a positive integer,

Slide 5

 defined in terms of subtraction.
Recursive Algorithms

- Recursive definitions of sequences or operations often can be turned into recursive algorithms with little effort.
- Examples - function to compute n-th Fibonacci number, function to do division by repeated subtraction.

Slide 6 - Efficiency considerations:

- In terms of computer time/memory usage, recursion is almost always worse than iteration - but not always, and sometimes not much worse.
- In terms of human effort to get program running correctly, recursion may be much better.

Reasoning About Recursive Algorithms

- A recursive algorithm "works" if:
- It works for the base case(s).
- For other cases, it works assuming the recursive calls work.
- The recursion eventually stops - recursive calls are always "smaller", and eventually reduce to base cases.
- We could formalize this as a proof by induction.

Recursive Algorithms, More Examples

- Two good examples in text - selection sort and binary search.
- Another example - "quicksort".
// pre: i, j are valid indices for L
// post: L(i) through L(j) are "sorted"
qsort (list L, index i, index $j)$
if ($i>=j$)
else
elem pivot $=\mathrm{L}(\mathrm{i})$
// rearrange L(i+1) through L(j) s.t.:
// L(i) .. L(m-1) <= pivot
$L(m)=$ pivot
$L(m+1) \quad L(i)>=$ pivot
index $m=\operatorname{split}($ pivot, $L, i, j)$ qsort (L, i, m-1) qsort (L, m+1, j)
end qsort
(Why does this work?)

