
CSCI 1323 February 23, 2004

Slide 1

Administrivia

• Reminder: Quiz 3 Wednesday.

• Homework 4 on Web. Due next Monday.

Slide 2

Recursion and Recursive Definitions

• Idea of recursion closely related to idea of induction — “build on previous

smaller cases”.

• First look at recursive definitions. To define something recursively:

– Define one or more “base cases”.

– Define remaining cases in terms of other (“smaller”) cases.



CSCI 1323 February 23, 2004

Slide 3

Recursive Definitions — Sequences

• A silly example:

S(1) = 1

S(n) = S(n− 1)× 10, for n > 1

Try writing down some terms.

• Another example:

S(1) = 1

S(2) = 1

S(n) = S(n− 2) + S(n− 1), for n > 2

Try writing down some terms. Anyone recognize this one?

Slide 4

Recursive Definitions — Sets

• Example — could define the set of “integer arithmetic expressions” like this:

– Integers are expressions.

– If E and F are integer arithmetic expressions, so are (E + F ),

(E − F ), (E × F ), and (E/F ).

Examples?

Notice that this allows us to generate only “sensible” expressions. Notice also

that it’s a bit more restrictive than we might like.

• We could write similar definitions for the wffs of propositional and predicate

logic.



CSCI 1323 February 23, 2004

Slide 5

Recursive Definitions — Operations

• Example — factorial.

• Example — multiplication of non-negative integers, defined in terms of

addition.

• Example — (integer) division of a non-negative integer by a positive integer,

defined in terms of subtraction.

Slide 6

Recursive Algorithms

• Recursive definitions of sequences or operations often can be turned into

recursive algorithms with little effort.

• Examples — function to compute n-th Fibonacci number, function to do

division by repeated subtraction.

• Efficiency considerations:

– In terms of computer time/memory usage, recursion is almost always

worse than iteration — but not always, and sometimes not much worse.

– In terms of human effort to get program running correctly, recursion may

be much better.



CSCI 1323 February 23, 2004

Slide 7

Reasoning About Recursive Algorithms

• A recursive algorithm “works” if:

– It works for the base case(s).

– For other cases, it works assuming the recursive calls work.

– The recursion eventually stops — recursive calls are always “smaller”, and

eventually reduce to base cases.

• We could formalize this as a proof by induction.

Slide 8

Recursive Algorithms, More Examples

• Two good examples in text — selection sort and binary search.

• Another example — “quicksort”.
// pre: i, j are valid indices for L

// post: L(i) through L(j) are "sorted"

qsort(list L, index i, index j)

if (i >= j)

return

else

elem pivot = L(i)

// rearrange L(i+1) through L(j) s.t.:

// L(i) .. L(m-1) <= pivot

// L(m) = pivot

// L(m+1) .. L(j) >= pivot

index m = split(pivot, L, i, j)

qsort(L, i, m-1)

qsort(L, m+1, j)

end qsort

(Why does this work?)



CSCI 1323 February 23, 2004

Slide 9

Minute Essay

• Consider the following recursive definition of a sequence:

S(1) = 1

S(n) = 10S(n− 1) + 1, for n > 1

What are S(1), S(2), . . . S(5)?


