

Minute Essay From Last Lecture

- Question: Consider the following recursive definition of a sequence:

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=10 S(n-1)+1, \text { for } n>1
\end{aligned}
$$

Slide 2
What are $S(1), S(2), \ldots S(5)$?

- Answer?

Recurrence Relations

- Recall the silly example of defining a sequence recursively:

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide 3

Expanding out some terms, it seems fairly obvious that an equivalent definition would be $S(n)=10^{n-1}$ - a "closed-form solution" to the recurrence relation given in the second line of the definition.

- We'll look at various ways to come up with such solutions - because they're generally easier to compute, but sometimes it will be much easier to write down the recursive definition.

Solving Recurrence Relations, Continued

- For the silly example

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

we guessed a solution of $S(n)=10^{n-1}$. Can we verify that this is the same as the recursive definition? yes, via a proof by induction...

- Try another example - section 2.4 problem 75.
- Call this method "expand, guess, verify".

Solving Recurrence Relations, Continued

- Is there another way? In general, probably not, but there are some formulas for some frequently-occurring special cases.
- One is "first-order linear" recurrence relations. If

Slide 5

$$
S(n)=c S(n-1)+g(n)
$$

then we can show (see textbook for derivation) that

$$
S(n)=c^{n-1} S(1)+\sum_{i=2}^{n}\left(c^{n-i} g(i)\right)
$$

- Apply this to the two problems we did earlier - we should get the same results.

Minute Essay

- None - quiz.

