## Administrivia

- Reminder: Abelson lecture 4 pm today, Chapman Auditorium. Other talks:
- "Amorphous computing" in Dr. Myers's AI class tomorrow at 11:20am in HAS 340.
- Cryptography at 3:30pm in HAS 228.


## Slide 1

## Minute Essay From Last Lecture

- Question: Given the recurrence relation:

$$
\begin{aligned}
& P(1)=500 \\
& P(n)=P(n-1) * 1.1, \text { for } n>1
\end{aligned}
$$

Slide $2 \quad$ What is a closed-form solution? (Okay to guess.)

- Answer?


## Analysis of Algorithms, Longer Example Continued

- Recall the more complicated version of the $a^{b}$ algorithm:

```
double exp(double a, int b) {
        if (b == 1)
            return a;
        else {
            double temp = exp (a, b/2);
            if (b % 2 == 0)
                return 1 * temp * temp; // extra "*", yes
            else
                return temp * temp * a;
    }
}
```

- How to figure out how many multiplications? Define and solve a recurrence relation.


## Analysis of Algorithms, Continued

- More complicated (but faster) $a^{b}$ algorithm — example of "divide and conquer" algorithms. General form:

```
if (base case)
            solve
else {
        split into 2 subproblems
        solve subproblems
        merge subsolutions
    }
```

- In general, recurrence relation for work involved has the form

$$
S(n)=c S(n / 2)+g(n), \text { for } n=2^{m}, n>1
$$

for which we can derive a formula ...

## Analysis of Algorithms, Continued

- For a recurrence relation of the form

$$
S(n)=c S(n / 2)+g(n), \text { for } n=2^{m}, n>1
$$

we can derive (in textbook) the following solution:

$$
S(n)=c^{\log n} S(1)+\sum_{i=1}^{\log n} c^{\log n-i} g\left(2^{i}\right)
$$

- Example - recurrence relation for exponentation algorithm:

$$
\begin{aligned}
& M(1)=0 \\
& M(n)=2+M(n / 2), \text { for } n=2^{m}, n>1
\end{aligned}
$$

- Example - practice \#23 from textbook.


## Minute Essay

- How many comparisons are needed to sort an array of $N$ elements using bubble sort?:

```
for (int i = 0; i < N-1; ++i) {
    for (int j = 0; j < N-1-i; ++j) {
        if (a[j+1] > a[j])
                        swap(a[j+1], a[j]);
        }
    }
```

- Reminder: Homework 4 due today by 5 pm .

