Administrivia

- Reminder: Homework 5 due at class time Friday.
- I will post a review sheet for the midterm on the Web. We will use Friday's class for a review.

Slide 1

Minute Essay From Last Lecture

- Question: How many comparisons are needed to sort an array of N elements using bubble sort?:

```
for (int i = 0; i < N-1; ++i) {
    for (int j = 0; j < N-1-i; ++j) {
if (a[j+1] > a[j])
                        swap(a[j+1], a[j]);
            }
}
```

Slide 2

- Answer?

Sets

- (This will likely be review for most of you!)
- Definition: Informally, a set is a collection of objects (unordered, no duplicates). Formally - well, formal definitions are surprisingly difficult!
- Some notation - for x an object and A a set,

Slide 3

$x \in A$ means - ?
$y \notin A$ means - ?

- We say two sets are equal exactly when they have the same members.

Ways to Specify Sets

- By listing elements, e.g., $S=\{a, b, 1,2\}$.
- Recursively, as in chapter 2.
- By describing a property P such that x is in S exactly when $P(x)$. E.g., $S=\{x \mid x$ is an even integer $\}$
Slide 4
- As one of
- \{\} or \emptyset (empty set).
- \mathbb{N} (non-negative integers).
- \mathbb{Z} (integers).
- \mathbb{Q} (rationals).
- \mathbb{R} (reals).
- \mathbb{C} (complex numbers).

Subsets

- $A \subseteq B$ exactly when every element of A is also in B. "Proper" subset is when $A \neq B$.

For what sets S is the empty set a subset of S ?

- If $A \subseteq B$ and $B \subseteq A$, what do we know about A and B ?

Slide 5

Power Sets

- Sets are collections of objects, so no reason we can't have sets of sets, right?
- For set S, define $\mathscr{P}(S)$ ("power set of S ") to be the set of all subsets of S.
- If S is finite and has n elements, how many elements in $\mathscr{P}(S)$? (See textbook for nice inductive proof.)

Slide 6

Operations on Sets

- Union: $A \cup B=\{x \mid x \in A \vee x \in B\}$.
- Intersection: $A \cap B=\{x \mid x \in A \wedge x \in B\}$. What does " A and B are disjoint" mean?
- Complement: $A^{\prime}=\{x \mid x \in S \wedge x \notin A\}$, where S is some "universal

Slide 7

 set" (without which this definition doesn't make sense) - integers, people, etc.- Difference: $A-B=\{x \mid x \in A \wedge x \notin B\}$.
- Cartesian product: $A \times B=\{(x, y) \mid x \in A \wedge y \in B\}$.

Properties of Set Operations

- These operations have many useful properties - commutativity, associativity, etc. - see p. 171 for a list.
- All of these properties can be proved from the definition ($A=B$ exactly when $A \subseteq B$ and $B \subseteq A$). Example - show $A \cup B=B \cup A$.

Slide 8

Countable and Uncountable Sets

- If A and B are finite sets, fairly obvious what it means for them to be "the same size", right?
- Is there some way to extend this to notion of "size" for infinite sets?

Slide 9

Countable and Uncountable Sets, Continued

- A bit informally, we can say that two sets are the same size ("have the same cardinality") if we can set up a one-to-one correspondence between them.
- For finite sets, matches our earlier/intuitive ideas, right? How about infinite sets?

Slide 10

- Positive integers versus negative integers?
- Even integers versus odd integers?
- Integers versus even integers?

Countable and Uncountable Sets, Continued

- Define " S countable" to mean there's some way to write down all elements of S "in order". (Might be more than one way - okay so long as there's at least one.)
- Are the following sets countable?

Slide 11

- Finite sets?
$-\mathbb{N}$?
$-\mathbb{Z}$?
$-\mathbb{Q}^{+}$?

Countable and Uncountable Sets, Continued

- So are all sets countable?? No. \mathbb{R} is not.
- We can also prove that S and $\mathscr{P}(S)$ are not "the same size".
- More later ...

