Administrivia

- Midterm grades to be sent by e-mail this week or next.
- I plan to show up Friday with something to say about an interesting tangent. If you're here too, double attendance points.

Slide 1

Sets - Review

- Last week we reviewed/defined a lot of stuff about sets:
- Ways to write/specify them.
- Subsets and power sets.
- Operations on sets.
- Countability.
- Minute essay question: Suppose you have
$A=\{2,4,6,8\}$
$B=\{1,4,9,16\}$
What are $A \cup B, A \cap B$, and $A-B$? How many elements are there in $\mathscr{P}(A)$?

Countable and Uncountable Sets, Recap

- We said last week that we'd say two sets are "the same size" if we could set up a one-to-one correspondence between them.
- We also said that we'd say a set S is countable if there's some way to write down all elements "in order" - i.e., set up a one-to-one correspondence with

Slide 3

 a subset of the positive integers. We showed that surprisingly many sets are countable - e.g., the rational numbers.- So are all sets countable?

Countable and Uncountable Sets, Continued

- \mathbb{R} is not countable. Proof is by contradiction. First we notice that we can set up a one-to-one correspondence between all real numbers and the real numbers greater than 0 and less than 1 . Then we assume we can "list" those numbers and show that there's one we missed.

Slide 4

- We can also prove that S and $\mathscr{P}(S)$ are not "the same size", again by contradiction. (But not today.)
- (Is any of this crucially important to your understanding of computer science? Probably not, but it's too entertaining to skip.)

Counting (Combinatorics)

- "Counting" sounds too trivial for a college-level course, right? but consider situations in which you want to know how many things there are in a set but don't actually want to list them all:
- Given what a password is supposed to look like (4 digits, 20 characters,

Slide 5

 etc.), how many are there? i.e., how easy would it be to guess?- Given a scheme for IP addresses, how many are possible? i.e., are there enough for everything we want to give one to?

Multiplication Principle

- If there are N_{1} outcomes for event 1 and N_{2} outcomes for event 2 , how many outcomes are there for the sequence "event 1 , then event 2 "?
- Pictorially, we could draw a tree, and then we can see there are $N_{1} \times N_{2}$.
- This is easily extended by induction to sequences of more than two events.

Slide 6

- Example: If a password consists of 4 decimal digits, how many are there?
(And if we allowed 10 seconds to try each one, how long would it take to try them all?)
- Example: If a license-plate number is 3 decimal digits followed by three alphabetic characters, how many are there?

Addition Principle

- If there are N_{1} outcomes for event 1 and N_{2} outcomes for event 2 (and the sets of "event 1 outcomes" and "event 2 outcomes" are disjoint), how many outcomes are there for the event "event 1 or event 2"?
- Fairly easy to see that there are $N_{1}+N_{2}$ possibilities in all.

Slide 7

- This also is easily extended by induction to combinations of more than two events.
- Example: If you have to choose an elective from either the Department of Esoteric Pursuits (which offers 10 of them) or from the Department of Life Skills (which offers 6 of them), how many choices are there in all? (assuming no courses are cross-listed).

Combining the Addition and Multiplication Principles

- Example: How many phone numbers are there that have either area code 210 or area code 512?
- Example: How many 7-digit phone numbers have at least one repeated digit?

Slide 8

Decision Trees

- Sometimes it's useful to represent a sequence of choices as a "decision tree" and explicitly count leaf nodes.
- Example: How many ways are there to get 4 coin tosses with no sequences of three heads or three tails?

Slide 9

More Examples

- Section 3.2 problem 40.
- Section 3.2 problem 44.

Minute Essay

- If a password is at least 5 characters and no more than 8 , where a character is either a digit or a lowercase character, how many possible passwords are there? (Okay to just write down an expression and not simplify - e.g., 10^{4}.)

Slide 11

