Administrivia

- None.

Slide 1

Infinite Sets are Interesting, Continued

- Finite sets have finite sizes.
- The "smallest" infinite set is \mathbb{N}. Many other infinite sets are the "same size" e.g., \mathbb{Z}, \mathbb{Q}. This set's size is referred to as \aleph_{0} ("aleph null"). Assuming that these sizes can be ordered, the "next bigger" size is \aleph_{1}, etc.

Slide 2

- \mathbb{R} is "bigger", and the Continuum Hypothesis says it has size \aleph_{1}. Interestingly enough, \mathbb{R}^{2} is "the same size" as \mathbb{R}, etc.
- And then there are infinitely many bigger sizes, since in general we can prove that S and $\mathscr{P}(S)$ are not "the same size". The proof is by contradiction and is - interesting? clever?

Recursion Can Be Fun (?)

- Let's try to define integer arithmetic (well, for non-negative integers) without ints as follows:
- Let n be some sort of list of n elements. We could implement this as something even simpler than a linked list - just a chain of pointers.

Slide 3

- Define "primitive" operations isZero, add1, sub1.
- Try to build arithmetic and relational operations using primitive operations and recursion.
- Do you think this is doable in actual code? How much slower do you think it will be?

Minute Essay

- None - sign in.

Slide 4

