Administrivia

- Midterm grades mailed earlier today, including letter-grade estimate. Things to note if you're not happy with yours:
- In computing the final grade, l'll drop the lowest quiz score. I didn't do that here.

Slide 1

- Letter grades are conservative estimates.
- There are still lots of points in play, and there will likely be a possibility of extra-credit points at the end of the term.

Minute Essay From Last Lecture

- Question: If a password is at least 5 characters and no more than 8, where a character is either a digit or a lowercase character, how many possible passwords are there? (Okay to just write down an expression and not simplify - e.g., 10^{4}.)

Slide 2

- Answer?

Counting, Recap/Review

- Multiplication principle - if there are N ways to do one thing, and M ways to do another, there are $N \times M$ ways to do first one and then the other.
- Addition principle - if there are N ways to do one thing, and M ways to do another, there are $N+M$ ways to do one or another.

Slide 3

- Can combine these in interesting and effective ways. Recall examples from earlier class. One more example - section 3.2 problem 58.
- Decision trees also sometimes useful. Recall example from earlier class (sequences of heads and tails).

Principle of Inclusion/Exclusion

- Motivating(?) example:

You take a poll of how many people support propositions A and B. You find that 10 of them support $A, 20$ support B, and 5 support both A and B. How many support either A or B ?

- Using set notation, with $|S|$ meaning the number of elements in S :

Slide 4
Given $|A|=10,|B|=20$, and $|A \cap B|=5$,
what is $|A \cup B|$?

- We can use the addition principle to derive

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

(Intuitive idea is that we count everything in both sets, and in doing that we count some things twice, so we must correct.)

Apply to example.

Principle of Inclusion/Exclusion, Continued

- What if there were three propositions? for example,

10 people support A
20 support B
15 support C
Slide 5
5 support both A and B
5 support both A and C
5 support both B and C
2 support all three

- Can we derive a rule for three sets? (Yes, from the rule for two sets and properties of set union and intersection.)

Principle of Inclusion/Exclusion, Continued

- Rule for three sets is
$|A \cup B \cup C|=|A|+|B|+|C|-|B \cap C|-|A \cap B|-|A \cap C|+|A \cap B \cap C|$
Intuitive idea:
Slide $6 \quad$ Count all the A's, all the B's, all the C's.
A\&B's, B\&C's, and A\&C's have been counted twice; A\&B\&C's have been counted three times.

Subtract counts of A\&B's, B\&C's, and A\&C's; now A\&B\&C's have been counted zero times.

Add count of A\&B\&C's.

- There's a pattern here, captured in general form of rule (p. 205).

Pigeonhole Principle

- Idea is that if you have n items placed in k bins, and $n>k$, then at least one bin has more than one item.

Converse is that if no bin contains more than one item, n can be at most what?

Slide 7

- Example - section 3.3 problem 17.

Minute Essay

- An easy one: How was your spring break?

Slide 8

