Administrivia

- Reading for Wednesday was wrong — should be 3.5 not 3.6. Corrected now.

Slide 1

Finite Probability — Review/Recap

- Probability of event E in sample space $S: P(E)=\frac{|E|}{|S|}$.
- Conditional probability of E_{2} given $E_{1}: P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{1}\right)}$. Equivalent to $\frac{\left|E_{1} \cap E_{2}\right|}{E_{1}}$.

Slide 2

- For disjoint events E_{1} and $E_{2}, P\left(E_{1} \cup E_{2}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)$. Follows from definition, facts about sets.
- For independent events (defined in terms of conditional probability), $P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \times P\left(E_{2}\right)$.

Examples

- If a fair coin is tossed four times, what's the probability of getting four heads? What's the probability that the last toss is a head given that the first three are heads?
- In a group of n people, what's the probability that at least two people have the

Slide 3

 same birthday?
Expected Value

- You probably know about computing weighted averages - from classes in which your grade is computed as, e.g., 50% exams, 20% homework, etc.
- "Expected value" is a generalization of this: Given a sample space S, a "random variable" X (function from S to \mathbb{R}), and a probability distribution p, define expected value of X thus:

$$
E(X)=\sum_{x \in S} X(x) p(x)
$$

Intuitive idea - "average" value, where the average is weighted by how likely the different values are.

Average-Case Analysis of Algorithms

- Previously we talked about estimating worst-case execution time of algorithms - amount of "work" as a function of input size.
- We could also talk about average-case amount of work, based on idea of expected value: Sample space is set of all possible inputs. For input $x, X(x)$ is the amount of work for x and $p(x)$ is the probability of x.

Example - example 68 in textbook.

Binary (and other) Relations

- Idea of a binary relation is to express relationship between pairs of elements of a set. Some interesting special cases:
- Partial orderings - useful in working out how we could put things "in order", e.g., a set of tasks with (some) ordering dependencies.

Slide $6 \quad$ - Functions (of 1 variable).

- Generalization - " n-ary relation", also with interesting special cases:
- Functions of more than 1 variable.
- Relational databases.

Binary Relations

- Formal definition: A binary relation ρ on a set S is a subset of $S \times S$. Usually this set is defined by some property of interest. For $a, b \in S$, we write $a \rho b$ iff (if and only if) (a, b) is in this subset.
- Examples:

Slide 7

- S is people in the world; $x \rho y$ iff x and y are siblings.
$-S$ is integers; $x \rho y$ iff $x<y$.
- S is integers; $x \rho y$ iff y is a multiple of x.
- S is integers; $x \rho y$ iff $y=x^{2}$.
- Notice that for a given relation ρ and element x, there can be any number (including zero) of y 's such that $x \rho y$ and any number (including zero) of y 's such that $y \rho x$.
- Next step will be to define "interesting" properties of relations.

Minute Essay

- If a fair coin is tossed four times, what's the probability of getting two heads and two tails given that there's at least one head and at least one tail?

Slide 8

