Administrivia

- None.

Slide 1

Minute Essay From Last Lecture

- Question: If we define a relation ρ on the students in this class, such that $x \rho y$ iff x and y are sitting in the same row:
Is ρ reflexive? symmetric? transitive? antisymmetric?
- Answer?

Slide 2

Closures

- Last time we talked about several properties a relation can have - reflexivity, symmetry, etc.
- We can also talk about the "closure" of a relation with respect to a property the smallest superset of the relation that has the property.

Slide 3

- Example: Define relation ρ on integers such that $x \rho y$ iff $y=x+1$. What is the transitive closure of ρ ?

Uses of Partial Orderings

- As mentioned last time, a partial ordering (reflexive, symmetric, transitive relation — think "generalized \leq ") can express ordering constraints among tasks.
- We'll look at two applications - PERT charts and topological sorting.

Slide 4

PERT Charts

- (PERT is "Program Evaluation and Review Technique".)
- Idea is to start with a set of tasks, each of which can have others as prerequisites (i.e., a partial ordering), and express these relationships graphically, and also include time to complete each task. From the diagram, can then determine minimum time to complete all tasks, "critical path".
- Example - practice problem 17 in text.

Topological Sorting

- Idea here is to take a partial ordering and find a way to extend it to a "total" ordering (i.e., add pairs so that for every x and y either $x \rho y$ or $y \rho x$. How is this useful? e.g., find a way to "schedule" interdependent tasks.
- Notice that there could be more than one way to do this for a given partial Slide $6 \quad$ ordering.

Topological Sorting, Continued

- Algorithm for finding a way to extend a partial ordering - "topological sort":
- Start with set S and partial orderig ρ on S. Idea is to turn S into a sequence x_{1}, x_{2}, \ldots such that $\left(x_{i} \rho x_{j}\right) \rightarrow(i \leq j)$.

Slide 7

- The algorithm might look like this in pseudocode:
while (S not empty)
pick a minimal element x in S
make it the next element of the sequence and remove it from S end while
- Does this work? i.e., does it produce an ordering that extends ρ ? True if we can be sure that for x and y with $x \rho y x$ is picked before y.
- Try this on previous example...

Minute Essay

- None - quiz.
- Reminder - Homework 6 due by 5pm.

Slide 8

