Administrivia

- None?

Slide 1

Functions

- Definition: $f: S \rightarrow T$ is a subset of $S \times T$, such that for every $s \in S$, there's exactly one (s, t) in the subset. Write $f(s)=t$.
- Terminology: S is f 's domain. T is f 's co-domain (or range).
- Examples:

Slide 2

- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=x^{2}$.
- $g: \mathbb{N} \rightarrow \mathbb{R}$ defined by $g(x)=\sqrt{x}$.
- $h: P \rightarrow(P \times P)$ (where P is the set of people in the world) defined by $h(x)=(($ bio? $)$ mother of x, (bio?)father of $x)$.
- Idea easily extends to functions of more than one variable.

Properties of Functions

- For $f: S \rightarrow T, f$ is onto if for every $t \in T$ there's an $s \in S$ with $f(s)=t$. " f covers everything in T."

Examples?

- For $f: S \rightarrow T, f$ is one-to-one if for every $s, s^{\prime} \in S$,

Slide 3
$f(s)=f\left(s^{\prime}\right) \rightarrow s=s^{\prime}$. " f maps different things in S to different things in $T^{\prime \prime}$.
Examples?

- If f is both one-to-one and onto, call it a bijection.

Composition of Functions

- For $f: S \rightarrow T$ and $g: T \rightarrow U$, can define $g \circ f: ? \rightarrow$?: $(g \circ f)(s)=g(f(s))$.
- Examples?

Slide 4

Function Inverses

- If f is a bijection, can define inverse of $f, f^{-1}: T \rightarrow S$ such that
$f \circ f^{-1}=$ identity function on S
$f^{-1} \circ f=$ identity function on T
- Can we do this if f is not a bijection?

Slide 5

Set Cardinality, Revisited

- We can say that sets S and T have the same cardinality ("same size") if there is a bijection $f: S \rightarrow T$ - more formal/precise version of earlier definition, works for both finite and infinite sets.
- If we can define a one-to-one $f: S \rightarrow T$, then the cardinality of S is less

Slide 6

 than or equal to the cardinality of T.- Recall that we had a "smallest" infinite set \mathbb{N}, and a strictly "larger" infinite set \mathbb{R}. Are there any bigger sets?
Yes. Recall that if S is finite with n elements, $\mathscr{P}(S)$ is strictly bigger (2^{n} elements). True for infinite sets as well - Cantor's theorem.
- Notice that this defines an equivalence relation on sets.

