Administrivia

- Homework 7 due date extended to Friday.
- Reminder: Quiz 6 Wednesday.

Slide 1

Minute Essay From Last Lecture

- Questions:
- Which of the following functions are $O\left(N^{2}\right)$?

$$
f(N)=100 N^{2}
$$

$$
g(N)=N^{2}+N-1000
$$

Slide 2
$h(N)=N^{3}$

- Which of the following functions are $O\left(2^{N}\right)$?
$f(N)=2^{N}-5$
$g(N)=10^{N}$
$h(N)=N!$
- Answers?

Matrices - Definitions and Terminology

- Informal definition — rectangular 2D grid. Could use to represent binary relation, system of linear equations, etc.
- Terminology:
- Dimensions and indexing.

Slide 3

- Diagonal matrix.
- Symmetric matrix.
- Matrix transpose $\left(A^{T}\right)$.

Operations on Matrices

- Operations defined so that matrices will be useful for representing "linear transformations" (from one 2D space to another).
- Addition, subtraction, scalar multiplication fairly obvious/straightforward apply operations elementwise. (What does this imply about the dimensions of

Slide 4

 the matrices involved?)- Matrix multiplication somewhat less straightforward - element (i, j) of $A \cdot B$ is the "inner product" of row i of A and column j of B - multiply corresponding elements and sum up results. (What does this imply about the dimensions of the matrices involved?)
- Matrix inverse A^{-1} is matrix that when multiplied by A gives identity matrix.

Matrices and Systems of Linear Equations

- Matrices can be used to represent/solve systems of linear equations. See problems 14, 15.

Slide 5

Minute Essay

- Given A and B as follows, compute $A \cdot B$:

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
5 & 1 & 6
\end{array}\right] \\
& B=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\end{aligned}
$$

Slide 6

