Administrivia

- Homework 8 on Web (not yet complete). Due next Friday.

Slide 1

Trees - Overview

- You probably know trees from PAD 2. In math terms, we can say a tree is a kind of graph - acyclic, connected, one node designated "root".
- Can be used to represent any kind of hierarchy, e.g.:
- Table of contents of a book.

Slide 2

- Hierarchical help system.
- Arithmetic expression.

Trees - Terminology

- Some terminology should be familiar: root, subtree, parent, children, root of subtree.
- Other terms:
- Depth of node (distance from root), height of tree (maximum depth).
- Binary tree - at most two children per node.
- Full binary tree.
- Complete binary tree.

Trees — Recursive Definition

- Tree is either
- A single node, or
- The tree formed by combining a root r with (disjoint) subtrees t_{1} through t_{n}.
- (Example.)

Computer-Friendly Representation of Trees

- Can of course use any representation that works for general graphs.
- Can also use array representation for binary trees: Number the nodes from 1 to N, and make a 2-by- N array for left/right children.
- Can also use pointer-based representation - simpler for binary trees, but

Slide 5

 possible for general trees as well.
Tree Traversals

- For linear data structures (lists, arrays, etc.), basically only one reasonable way to "walk through" the structure to visit each element.
- For trees, there are three "reasonable" ways:
- Preorder traversal (root first, then subtrees).

Slide $6 \quad$ - In-order traversal (leftmost subtree first, then root, then rest).

- Postorder traversal (subtrees first, then root)
- Functions to perform any of these (e.g., and print each node as it is visited) are almost trivial to write write recursively, much more difficult without recursion.

Trees - Special Types

- Special types (familiar from PAD 2?):
- Sorted binary tree.
- Heap.

Slide 7

Trees and Recursion/Induction

- Easy to write other recursive algorithms to operate on trees - e.g., function to find height of tree.
- If we use the recursive definition of a tree, we can prove things about trees using induction. Example from textbook - prove that number of arcs is one Slide 8 less than number of nodes.

