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Administrivia

• Notice that my slides will be available linked from the “lecture topics and

assignments” Web page, usually fairly soon after class.

• First homework on Web; due a week from Monday.
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Minute Essay From Last Lecture

• Question: What have you liked/disliked about previous math courses?

• Answers indicate that people like/dislike different things! some “only if it

applies to something I care about”, some “I like math”, some “I hate proofs”

. . .

Notice that this is “discrete math” as opposed to the kind of “continuous math”

involved in calculus.
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Why Study Propositional Logic?

• Because it’s conceptually related to Boolean algebra (used in programming,

circuit design, etc.).

• Because it’s related to proofs, which you should know a bit about.

• As an example of a “formal system” — represent something symbolically,

define and apply rules for manipulating symbols, etc. Other examples in

automata theory, theory of databases, etc.

• Because when you ask Dr. Theory (Myers) what you should learn in this

course, he says “logic, logic, logic, logic!”

• Because after logic, the rest of the course will (probably) seem easy!
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Propositional Logic — The Big Picture

• Underlying many fields is a notion of “valid argument”, one thing “following

logically” from another — math, science, law, etc. (Consider example at the

start of chapter 1.)

• Can define precisely what this means using natural language, but it’s difficult

and clumsy.

• If we use mathematical notation instead, it’s easier to produce/follow chains of

reasoning.

(Analogous to “word problems” in algebra — the idea is to turn something

that’s clumsy to work with into mathematical symbols, operate on the symbols

with well-defined math, and translate the result back into words.)
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Statements / Propositions

• Definition — something (in natural language, a sentence) that is either true or

false. (We might not know which.)

• Which of these are statements?

– Water is wet.

– Water is not wet.

– Is the sky blue on Venus?

– There is life on Mars.

• Notational convention — A, B, C , etc., are statements.
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Connectives

• Can build up more complicated statements by combining simpler ones, using

“connectives” — each has intuitive meaning, formal definition.

• “and” connective pretty clear — A ∧ B defined by truth table

• “or” connective also pretty clear — A ∨ B defined by truth table

Notice that this is “inclusive or” — not always the same as what we mean by

“or” in natural language.

• “not” connective also pretty clear — A′ defined by truth table

• “implies” connective is trickier — A → B defined by truth table

Why define it that way? Stay tuned . . .

• “is equivalent to” connective also pretty clear — A ↔ B defined by truth

table
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Why Did We Define Implication That Way?

• Definition of A → B when A is true seems reasonable, right?

• When A is false, though — why say A → B is true?

– “Benefit of the doubt” argument: We have to call it either true or false, and

it’s not obviously false.

– “It’s math” argument: Maybe this definition doesn’t express some

fundamental truth. But in some sense math is its own universe, and we

can define things any way we want (though we hope the definitions fit

together in a nice way and maybe have applications).

(In fact, some treatments of propositional logic just define implication

formally, in terms of other connectives, and don’t try to justify it.)
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Compound Statements / Well-Formed Formulas

• Natural-language equivalents of statements joined by connectives:

– Water is wet and grass is green.

– If Jo(e) is a CS major, Jo(e) must take this course.

• We can “nest” connectives, e.g., (A ∧ B)
′.

• We can define a notion of “well-formed formula” (wff) based on this (formal

definition should be recursive, and we’ll do that later) — basically, a “sensible”

combination of statement letters, connectives, and parentheses.

• Notational convention — P , Q, . . . for wffs.

• We can use truth tables to figure out truth values for wffs. (How many rows do

we need?) Let’s do an example . . .
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Compound Statements, Continued

• As an example, let’s try turning the example at the start of chapter 1 into

formulas, using the following:

A is “The client is guilty.”

B is “The knife was in the drawer.”

C is “Jason P. saw the knife.”

D is “The knife was there on Oct. 10.”

E is “The hammer was in the barn.”

• And then we hope we can somehow use the formulas to help us decide

whether the conclusion follows from the premises.
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More Definitions

• Some wffs are always true — “tautologies”. Examples?

• Some wffs are always false — “contradictions”. Examples?

• We can talk about two wffs P and Q being “equivalent” — P ↔ Q is a

tautology.

Write P ⇔ Q.

Table of common equivalences on p. 8.

Additional widely-used equivalences — “De Morgan’s Laws”.
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Propositional Formulas in Other Contexts

• Notice similarities between the connectives here and

– Boolean expressions in programming languages.

– Expressions for “advanced search” in some search engines, database

queries, etc.

• Can use rules we have so far to simplify such expressions.
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Valid Arguments

• Now we want to capture notion of “valid argument” — formal version of what

someone familiar with proofs would recognize as such.

• Idea is that we have “hypotheses” P1, P2, . . . , Pn and “conclusion” Q, and

we want to know when we can be sure that the truth of the hypotheses

guarantees the truth of the conclusion — i.e., when is

(P1 ∧ . . . ∧ Pn) → Q

a tautology?

• Could we use truth tables? If we can, would we always want to?
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Valid Arguments, Continued

• A more algorithmic view — apply “derivation rules” to construct a “proof

sequence”.

Idea is that we have a list of wffs that we know are true any time all the

hypotheses (P1, P2, . . . Pn) are true. Then we proceed thus:

1. Initialize this list to include just P1, P2, . . . Pn.

2. If conclusion Q is on the list, stop.

3. Apply a derivation rule to one or more wffs in the list, producing a new wff

X . Add X to the list.

4. Go to step ??.
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Derivation Rules

• What kind of “derivation rules” would be good?

– When we apply one, we want it to be the case that if the wffs we start with

are true, the wff we derive is also true — system is “sound”. “Everything

we can prove is true.”

– Together they are powerful enough to allow us to construct proof

sequences for all true statements — system is “complete”. “Everything

that is true has a proof.” (Possible here, but not for more complicated kinds

of logic!)
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Minute Essay

• Suppose we have

W is “Water is wet.”

L is “There is life on Mars.”

• Write as wffs the following:

“Water is wet and there is life on Mars.”

“There is life on Mars if water is wet.”
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Minute Essay Answer

• “Water is wet and there is life on Mars.”:

W ∧ L

• “There is life on Mars if water is wet.”:

W → L


