Administrivia

- Reminder: Homework 2 due Monday.
- A note about the reading: We won't cover section 1.5 at all. We'll cover section 1.6, but later.

Slide 1

More Predicate Logic Examples

- (Section 1.4 problems 20, 24, 28.)

Proof Techniques

- In chapter 1 we worked up a formal system for proving "meaningless" formulas - which can prove "meaningful" formulas as special cases.
- Most of the time, though, we want to prove something is valid in a particular context, and the procedure is less formal and makes use of context-specific

Slide 3

 additional info (e.g., definitions of terms such as "even integer").- But keep in mind that less-formal proofs could be done in the millimeter-by-millimeter style of chapter 1.
- (Why are we doing this anyway? In part because you almost surely will see theorems/proofs in CS theory classes, in part to help with that "mathematical maturity" goal, ...)

Proof Techniques, Continued

- Suppose you have a "conjecture" (e.g., "all odd numbers greater than 1 are prime"). How to (try to) prove it?
- Well, first must sometimes decide whether to prove it. Do you think it's true?
- If it's a statement about all integers, etc., often helpful to start with "inductive reasoning" - try some examples and see what happens.
- If one doesn't work? "Counterexample" that shows conjecture false.
- If all succeed? Just means you didn't find a counterexample. So, turn to "deductive reasoning" to prove - subject of first part of chapter 2.
- Lots of examples/problems will be simple stuff about integers. Why? Something where we supposedly all know the "context".

Minute Essay

- Use predicate logic to prove that the following argument is valid: "All CS majors must take Discrete Structures. Some CS majors are also physics majors. Therefore, some physics majors must take Discrete Structures." Use predicates $C(x), D(x)$, and $P(x)$.

Slide 5

- Have you been asked to do proofs in a math (or other) course before? What course? Did you find it easy/hard? fun/painful?

Minute Essay Answer

- Hypotheses: $(\forall x)(C(x) \rightarrow D(x),(\exists x)(C(x) \wedge P(x)$

Conclusion: $(\exists x)(P(x) \wedge D(x)$
Proof:

1. $(\forall x)(C(x) \rightarrow D(x) \quad$ hyp
2. $(\exists x)(C(x) \wedge P(x)$ hyp
3. $C(a) \wedge P(a) \quad 2$, ei
4. $C(a) \rightarrow D(a) \quad 1$, ui
5. $C(a) \quad 3, \operatorname{sim}$
6. $P(a) \quad 3$, sim
7. $D(a) \quad 4,5, \mathrm{mp}$
8. $P(a) \wedge D(a) \quad 6,7$, con
9. $(\exists x)(P(x) \wedge D(x) \quad 8, \mathrm{eg}$
