Administrivia

- Homework 3 on Web. Due next Wednesday.

Slide 1

Proof Techniques, Review/Recap

- To disprove "for all integers $n, P(n)$ " just need one counterexample. To prove, must show true for all n.
- Techniques so far for proving $P \rightarrow Q$:
- Exhaustive proof: Consider all possible cases where P is true.
- Direct proof: Assume P and derive Q.
- Proof by contraposition: Assume Q^{\prime} and derive P^{\prime}.
- Proof by contradiction: Assume $P \wedge Q^{\prime}$ and derive "contradiction" (something impossible).

First Principle of Mathematical Induction

- We can prove that $P(k)$ is true for all integers $k \geq N$ (often N is 0 or 1 , but not always) if we can show:
- Base case: $P(N)$
- Inductive step: For $k \geq N, P(k) \rightarrow P(k+1)$

Slide 3

That is: Assume $P(k)$ and $k \geq N$ ("inductive hypothesis"), and show that then $P(k+1)$

- For readability/clarity, make this explicit, especially what you assume / have to show for inductive step.
- Works because we have $P(N)$ and then a chain of implications:
$P(N) \rightarrow P(N+1), P(N+1) \rightarrow P(N+2), \ldots$

First Principle of Mathematical Induction - Examples

- Example: Show that for $n \geq 1$,

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Slide 4

- Example: Show that for $n \geq 1$,

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Second Principle of Mathematical Induction

- Can also show that $P(k)$ is true for all integers $k \geq N$ (often N is 0 or 1 , but not always) if we can show that:
- Base case: $P(N)$
- Inductive step: For $k \geq N,((N \leq r \leq k) \rightarrow P(r)) \rightarrow P(k+1)$

Slide 5

That is: Assume that $P(r)$ holds for all integers r with $N \leq r \leq k$, and that $k \geq N$ ("inductive hypothesis"), and show that then $P(k+1)$

- For readability/clarity, again make this explicit ...
- Notice - inductive hypothesis here is more complicated, but gives you more to work with.
- Works because we have $P(N)$ and then a chain of implications:
$P(N) \rightarrow P(N+1), P(N) \wedge P(N+1) \rightarrow P(N+2), \ldots$

Second Principle of Mathematical Induction - Example

- Consider a perforated sheet of stamps. How many "tear into two sheets" operations are needed to produce single stamps?
- Conjecture, based on some examples - if there are n stamps ($n \geq 0$), we need $n-1$ operations.

Slide 6 - Can prove with second principle - to be continued.

