Administrivia

- Reminder: Homework 4 due Monday.
- If you didn't do well on Quiz 3, remember that I drop your lowest quiz score.

Slide 1

Recursive Definitions — Review

- Recall examples from last time - recursive definitions of sequences, sets, operations, algorithms.
- For sets, notice that this means that to claim that something is in the set you need to be able to show that it's either a base case or can be obtained from a Slide 2 base case by applying one of the "rules" that define the set.

Recursive Algorithms, More Examples

- Two good examples in text - selection sort and binary search.
- Another example - "quicksort".
// pre: i, j are valid indices for L
// post: L(i) through L(j) are "sorted"
qsort(list L, index i, index j)
if (i >= j)

Slide 3

else
elem pivot $=\mathrm{L}(\mathrm{i})$
// rearrange $L(i+1)$ through $L(j)$ s.t.:
// L(i) .. L(m-1) <= pivot
// L(m) = pivot
// L(m+1) .. L(j) >= pivot
index m = split(pivot, L, i, j)
qsort (L, i, m-1)
qsort (L, m+1, j)
end qsort
(Why does this work?)

Recurrence Relations

- Recall the silly example of defining a sequence recursively:

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide 4
Expanding out some terms, it seems fairly obvious that an equivalent definition would be $S(n)=10^{n-1}$ - a "closed-form solution" to the recurrence relation given in the second line of the definition.

- We'll look at various ways to get from a recursive definition to a closed-form one, because the latter are easier to compute, but sometimes it will be much easier to write down the definition recursively.

Solving Recurrence Relations, Continued

- For the silly example

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide 5

we guessed a solution of $S(n)=10^{n-1}$. Can we verify that this is the same as the recursive definition? yes, via a proof by induction ...

- Try another example - section 2.4 problem 75.
- Call this method "expand, guess, verify".

Solving Recurrence Relations, Continued

- Is there another way? In general, probably not, but there are some formulas for some frequently-occurring special cases.
- One is "first-order linear" recurrence relations. If

$$
S(n)=c S(n-1)+g(n)
$$

then we can show (see textbook for derivation) that

$$
S(n)=c^{n-1} S(1)+\sum_{i=2}^{n}\left(c^{n-i} g(i)\right)
$$

- Apply this to the two problems we did earlier - we should get the same results.

Minute Essay Answer

- The first few terms:
$S(1)=1$
$S(2)=11$
$S(3)=111$
$S(4)=1111$
$S(5)=11111$

