## Administrivia

- Reminder: Homework 4 due today.
- Homework 5 on Web, due Monday after spring break.
- Midterm rescheduled for Wednesday after spring break. This means we need


## Slide 1

 a firm deadline for Homework 5 (so I can make a solution available). Monday at 5 pm , or Tuesday at noon?- How many people will still be in town Friday at class time?


## Solving Recurrence Relations, Review

- Idea is to come up with "closed-form" (non-recursive) equivalent of recursive definition of sequence. Two approaches:
- "Expand, guess, verify".
- Formula (equation (8) on p. 134) — but works for first-order linear recurrence relations only.
- One more example - section 2.4 problem 80.


## Analysis of Algorithms, Overview

- Often there's more than one way to solve a given problem, i.e., more than one algorithm. Which one is "best"? Depends on what "best" means. If we mean "fastest":
- A useful measure of approximate execution time is worst-case (or sometimes


## Slide 3

 average-case) execution time expressed as a function of "problem size" (e.g., for operations on array, size of array) - "time complexity" of algorithm.(Another measure is "space complexity".)

- Customary to skip over housekeeping operations and count only "important stuff" - arithmetic operations, comparisons, etc.

Also customary to "round off" the estimate to an "order of magnitude" - for a problem of size $N$, we say an algorithm is $O(f(N))$ if execution time is $f(N)$.

## Analysis of Algorithms, Examples

- Example - computing a sum of $N$ numbers. How many additions?
- Example - sequential search of array of size $N$. How many comparisons (worst case)?
- Example - binary search of sorted array of size $N$. How many comparisons (worst case)?


## Analysis of Algorithms, Longer Example

- Look at several algorithms for computing $a^{b}$, for $b$ a positive integer. First version:

```
double exp(double a, int b) {
    double temp = a;
    for (int i = 1; i < b; ++i)
        temp *= a;
        return temp;
}
```

First, does this work? yes, and notice we could argue that it does using a loop invariant (what?).

- How many multiplications needed?


## Analysis of Algorithms, Longer Example Continued

- We could also express this recursively:

```
double exp(double a, int b) {
    if (b == 1)
        return a;
    else
        return a * exp(a, b-1);
}
Does this work? (Yes. Why?)
```

- How to figure out how many multiplications? Define and solve a recurrence relation.


## Analysis of Algorithms, Longer Example Continued

- We could also express this recursively another way:

```
double exp(double a, int b) {
    if (b == 1)
        return a;
    else {
        double temp = exp (a, b/2);
        if (b % 2 == 0) return temp * temp;
        else return temp * temp * a;
    }
}
Does this work? (Yes. Why?)
```

- How to figure out how many multiplications? Define and solve a recurrence relation. (To be continued.)


## Minute Essay

- Given a simpler recurrence relation:

$$
\begin{aligned}
& P(1)=500 \\
& P(n)=P(n-1) \times 1.1, \text { for } n>1
\end{aligned}
$$

Slide $8 \quad$ What is a closed-form solution? (Okay to guess.)


