Administrivia

- Homework 6 (on chapter 3) on Web. Due next Friday.
- Reminder: Quiz 4 Friday.

Slide 1

Counting, Recap/Review

- Multiplication principle - if there are N ways to do one thing, and M ways to do another, there are $N \times M$ ways to do first one and then the other.
- Addition principle - if there are N ways to do one thing, and M ways to do another, there are $N+M$ ways to do one or another.

Slide 2

- Can combine these in interesting and effective ways. Recall examples from last time.
- Decision trees also sometimes useful. Recall example from earlier class (sequences of heads and tails).

Principle of Inclusion/Exclusion

- Motivating(?) example:

You take a poll of how many people support propositions A and B. You find that 10 of them support A, 20 support B, and 5 support both A and B. How many support either A or B ?

Slide 3

- Using set notation, with $|S|$ meaning the number of elements in S :

Given $|A|=10,|B|=20$, and $|A \cap B|=5$,
what is $|A \cup B|$?

- We can use the addition principle to derive

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

(Intuitive idea is that we count everything in both sets, and in doing that we count some things twice, so we must correct.)

Principle of Inclusion/Exclusion, Continued

- What if there were three propositions/sets? Can we derive a rule?
- Sure ... (next slide).

Principle of Inclusion/Exclusion, Continued

- Rule for three sets is

$$
|A \cup B \cup C|=|A|+|B|+|C|-|B \cap C|-|A \cap B|-|A \cap C|+|A \cap B \cap C|
$$

- Intuitive idea:

Slide 5

Count all the A's, all the B's, all the C's.
A\&B's, B\&C's, and A\&C's have been counted twice; A\&B\&C's have been counted three times.
Subtract counts of A\&B's, B\&C's, and A\&C's; now A\&B\&C's have been counted zero times.

Add count of A\&B\&C's.

- Formally, derive from rule for two sets and rules for set operations.

Principle of Inclusion/Exclusion, Continued

- There's a pattern, captured in general form of rule (p. 205). (In another textbook - "A Ghastly Formula".)
- For more interesting examples (most beyond the scope of this course, Google "inclusion/exclusion principle").

Slide 6

Pigeonhole Principle

- Idea is that if you have n items placed in k bins, and $n>k$, then at least one bin has more than one item.

Converse is that if no bin contains more than one item, n can be at most what?

Slide 7
More general version - if you have k bins and more than $m k$ items, there's at least one bin with more than m items.

- Example - section 3.3 problem 17.

Pigeonhole Principle, Continued

- Another example (discovered on a Web page at Stanford):

If A is a set of 10 integers in the range 1 to 100 , show that there are at least two distinct and disjoint subsets of A that have the same sum.
(Idea is to count number of possible subsets and also figure out range of Slide 8 potential sums. If more subsets than possible sums ...)

Minute Essay

- If you have six integers in the range from 1 to 10 inclusive, can you be sure that at least two of them have an odd sum? (E.g., it's true for the integers 1 through 6, since 1 plus 2 is odd.)

Slide 9

Minute Essay Answer

- Yes - there are 5 even numbers in the range 1 through 10 and 5 odd numbers, so if you pick 6 numbers you'll have at least one of each, guaranteeing a pair with an odd sum.

