CSCI 1323 March 30, 2005

Administrivia

o Homework 6 (on chapter 3) on Web. Due next Friday.

e Reminder: Quiz 4 Friday.

Slide 1
Counting, Recap/Review
e Multiplication principle — if there are N ways to do one thing, and M ways to
do another, there are N x M ways to do first one and then the other.
e Addition principle — if there are N ways to do one thing, and M ways to do
another, there are N 4+ M ways to do one or another.
Slide 2

Can combine these in interesting and effective ways. Recall examples from

last time.

Decision trees also sometimes useful. Recall example from earlier class
(sequences of heads and tails).
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Principle of Inclusion/Exclusion

e Motivating(?) example:
You take a poll of how many people support propositions A and B. You find
that 10 of them support A, 20 support B, and 5 support both A and B. How
many support either A or B?

Slide 3 e Using set notation, with |S’| meaning the number of elements in .S:

Given |A| = 10, |B| = 20,and |AN B| =5,

whatis |A U B|?

e We can use the addition principle to derive
|AUB| = |A|+ |B| - |AN B|

(Intuitive idea is that we count everything in both sets, and in doing that we

count some things twice, so we must correct.)

. J

4 )

Principle of Inclusion/Exclusion, Continued

o What if there were three propositions/sets? Can we derive a rule?

e Sure ... (next slide).

Slide 4
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Principle of Inclusion/Exclusion, Continued

e Rule for three sets is
|[AUBUC| = |A|+|B|+|C|—|BNC|-|ANB|—|ANC|+|ANBNC|

o Intuitive idea:

Slide 5 Count all the A’s, all the B’s, all the C’s.

A&B'’s, B&C'’s, and A&C’s have been counted twice; A&B&C’s have been
counted three times.

Subtract counts of A&B’s, B&C'’s, and A&C’s; now A&B&C’s have been

counted zero times.

Add count of A&B&C'’s.

e Formally, derive from rule for two sets and rules for set operations.

. J
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Principle of Inclusion/Exclusion, Continued

e There’s a pattern, captured in general form of rule (p. 205). (In another
textbook — “A Ghastly Formula”.)

e For more interesting examples (most beyond the scope of this course, Google

“inclusion/exclusion principle”).

Slide 6
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Pigeonhole Principle

e |dea is that if you have n items placed in k bins, and n > k, then at least one

bin has more than one item.

Converse is that if no bin contains more than one item, n can be at most —
what?

Slide 7 More general version — if you have k bins and more than mk items, there’s

at least one bin with more than m items.

o Example — section 3.3 problem 17.

Pigeonhole Principle, Continued

e Another example (discovered on a Web page at Stanford):
If Ais a set of 10 integers in the range 1 to 100, show that there are at least
two distinct and disjoint subsets of A that have the same sum.
(Idea is to count number of possible subsets and also figure out range of
Slide 8 potential sums. If more subsets than possible sums ...)
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o If you have six integers in the range from 1 to 10 inclusive, can you be sure
that at least two of them have an odd sum? (E.g., it’s true for the integers 1
through 6, since 1 plus 2 is odd.)

Slide 9
® Yes — there are 5 even numbers in the range 1 through 10 and 5 odd
numbers, so if you pick 6 numbers you’ll have at least one of each,
guaranteeing a pair with an odd sum.
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