Administrivia

- (None?)

Slide 1

Binary Relations - Review

- Idea of a binary relation is to express relationship between pairs of elements of a set. Formal definition is in terms of sets of ordered pairs.
- Several properties of interest:
- ρ is reflexive if $x \rho x$ for all $x \in S$.

Slide $2 \quad-\rho$ is symmetric if $(x \rho y) \rightarrow(y \rho x)$ for all $x, y \in S$.
$-\rho$ is transitive if $(x \rho y) \wedge(y \rho z) \rightarrow(x \rho z)$ for all $x, y, z \in S$.
$-\rho$ is antisymmetric if $(x \rho y) \wedge(y \rho x) \rightarrow(x=y)$ for all $x, y \in S$.

Partial Ordering

- Idea: Generalize idea of "ordering" to include relations where not all pairs of elements can be ordered.
- Definition: ρ is a partial ordering if it's reflexive, antisymmetric, and transitive.
- Examples: \leq on integers or reals, \subseteq on sets.

Slide 3

- If finite, can represent with "Hasse diagram" (see examples in textbook).
- Related terms:
- Successor, predecessor, immediate predecessor, immediate successor.
- Least, greatest elements.
- Minimal, maximal elements.

Equivalence Relation

- Idea: Generalize idea of "equals" to include relations where pairs of elements are equivalent but not identical.
- Definition: ρ is an equivalence relation if it's reflexive, symmetric, and transitive.

Slide $4 \quad$ - Examples: $=$ on integers or reals, $(x \bmod n)=(y \bmod n)$ for some n.

- Related terms/ideas:
- Equivalence classes.
- Partition of a set.

Closures

- We can also talk about the "closure" of a relation with respect to a property the smallest superset of the relation that has the property.
- Example: Define relation ρ on integers such that $x \rho y$ iff $y=x+1$. What is the transitive closure of ρ ?

Slide 5

Uses of Partial Orderings

- One thing a partial ordering (reflexive, symmetric, transitive relation - think "generalized \leq ") can express — ordering constraints among tasks.
- We'll look at one application - topological sorting. PERT charts discussed in book.

Topological Sorting

- Idea here is to take a partial ordering and find a way to extend it to a "total" ordering (i.e., add pairs so that for every x and y either $x \rho y$ or $y \rho x$. How is this useful? e.g., find a way to "schedule" interdependent tasks.
- Notice that there could be more than one way to do this for a given partial

Slide 7

 ordering.- How to do this? Next slide ... (May not be covered in class.)

Topological Sorting, Continued

- Algorithm for finding a way to extend a partial ordering - "topological sort":
- Start with set S and partial ordering ρ on S. Idea is to turn S into a sequence x_{1}, x_{2}, \ldots such that $\left(x_{i} \rho x_{j}\right) \rightarrow(i \leq j)$.
- The algorithm might look like this in pseudocode:

Slide 8
while (S not empty)
pick a minimal element x in S
make it the next element of the sequence and remove it from S end while

- Does this work? i.e., does it produce an ordering that extends ρ ? True if we can be sure that for x and y with $x \rho y x$ is picked before y.

