Administrivia

- Reminder: Homework 7 due Monday.

Slide 1

Order of Magnitude of Functions, Review/Recap

- Often useful in analysis of algorithms to get a sense of how algorithm behaves (with regard to running time, memory needed, etc.) as size of input increases. Usually enough to get rough estimate - "order of magnitude" for functions, analogous to order of magnitude for numbers.

Slide 2

- Intuitive idea — classify according to "shape".

Order of Magnitude of Functions, Continued

- Formal definition: $f=\Theta(g)$ (f and g have the same order magnitude) iff there are positive constants n_{0}, c_{1}, c_{2} such that for all $x \geq n_{0}$

$$
c_{1} g(x) \leq f(x) \leq c_{2} g(x)
$$

Slide 3

Example from last time: $f(x)=x-10, g(x)=3 x+2$. We came up with $c_{1}=1 / 1000, c_{2}=1000, n_{0}=100$. (Plot with gnuplot.)

- Of course this is tedious to apply, so people have come up with some general rules. But first ...

"Big-O Notation"

- The $O(f(N))$ you see in computer science is similar, but it's a "less than or equal" rather than a "strictly equal" - i.e., $f(N)=O(g(N))$ means f 's order of magnitude is no bigger than g 's (and might be less).
Formally, true iff there are positive constants n_{0} and c such that for all

Slide 4

 $x \geq n_{0}$$$
f(x) \leq c g(x)
$$

- Interesting (?) to observe that Θ is an equivalence relation, and O is a partial ordering.

Order of Magnitude of Functions, Continued

- So we have a way to compare orders of magnitude of functions, with an "equals" (Θ) and a "less-than-or-equal-to" (O).
- In general, function's order of magnitude determined by fastest-growing term. Some categories of interest:

Slide 5

- x^{2} grows faster than x, x^{3} faster than x^{2}, etc. x^{2} and $c x^{2}$ "the same".
- $\log _{b} x$ grows more slowly than x.
- b^{x} grows faster than all polynomials.
- x^{x} grows faster than all b^{x}.

Graphs — Overview

- In some contexts, "graph" means a plot of a function, other pictorial representation of data.
- In other contexts, it's an abstract idea meant to represent relationships among a set of things. Examples:

Slide $6 \quad$ - Hasse diagrams of chapter 4.

- Airline route maps.
- Simplified maps showing driving distances between cities.

Common idea - set of things (set elements, cities) and a notion that some pairs of them are connected somehow. Details we don't care about have been "abstracted out".

Graphs - Definition

- Formal definition (undirected graph):
- Nonempty set N of nodes (vertices).
- Set A of arcs (edges).
- Function $f: A \rightarrow\{\{x, y\} \mid x, y \in N\}$ (unordered pairs of nodes).

Slide 7

Notice that we can have "loops" and also "parallel arcs".

- Variations/extensions:
- Directed graph — edges are ordered pairs (i.e., "one-way").
- Labeled graph — each vertex has some associated info ("label").
- Weighted graph — each edge has some associated info ("weight").

Graphs - Terminology

- Adjacent nodes (arc from one to the other).
- Loop, parallel arc.
- Simple graph (no loops or parallel arcs).

Slide 8 - Complete graph (every pair of nodes adjacent).

- Path (sequence of arcs), connected graph.
- Cycle, acyclic graph.

Minute Essay

- Which of the following functions are $O\left(N^{2}\right)$?
$g(N)=100 N^{2}+N-1000$
$h(N)=N^{3}$
- Which of the following functions are $O\left(2^{N}\right)$?

Slide 9
$f(N)=2^{N}-5$
$h(N)=N!$

Minute Essay Answer

- $O\left(N^{2}\right)$?
$g(N)=100 N^{2}+N-1000-$ yes
$h(N)=N^{3}-$ no
- $O\left(2^{N}\right)$?
$f(N)=2^{N}-5$ - yes
$h(N)=N!-$ no

