
CSCI 1323 April 25, 2005

Slide 1

Administrivia

• Reminder: Quiz 6 Wednesday.

• Homework 8 on Web. Due Friday.

Slide 2

Graphs — Review/Recap

• In context, “graph” is mathematical notion meant to represent relationships

among a set of things — focus is on relationships, with details we don’t care

about abstracted out.

• Formal definition in terms of set of nodes (vertices), arcs (edges), and

function mapping arcs to pairs of nodes.

• Much terminology. Key terms:

– Directed versus undirected.

– Adjacent nodes, paths, connected graphs.

– Cycles, acyclic graphs.



CSCI 1323 April 25, 2005

Slide 3

Isomorphic Graphs

• What we care about is the relationship between nodes and arcs, not exact

visual representation.

• Can formalize this as “isomorphism” — two graphs are isomorphic if one is

just a “relabeling” of the other.

• Formal definition is in terms of one-to-one functions, one from nodes of graph

G1 to nodes of graph G2 and one from arcs of graph G1 to arcs of graph

G2. Idea is that if an arc connects two nodes in G1, the corresponding arc in

G2 connects the corresponding nodes.

Slide 4

Computer-Friendly Representation of Graphs

• For humans, representing graphs pictorially usually works well. For

computers, other representations work better.

• Key idea is to come up with a way to represent the essential information —

set of nodes and which ones are connected.



CSCI 1323 April 25, 2005

Slide 5

Adjacency Matrices

• Idea is to put the n nodes in some (arbitrary) order and define an n-by-n

matrix A such that Aij is the number of arcs connecting node i and node j.

• For an undirected graph, what property does this matrix have? that it might or

might not have for a directed graph?

• Variation: For a weighted graph with no parallel arcs, we could let Aij be the

weight of the arc from node i to node j.

Slide 6

Adjacency Lists

• Idea is to again put n nodes in some arbitrary order, but rather than a matrix

define an array of n lists, one for each node, with the list for node i containing

all nodes j that are adjacent to node i. Parallel arcs mean “duplicate” entries.



CSCI 1323 April 25, 2005

Slide 7

Adjacency Matrix Versus Adjacency List

• Which uses less space?

• Which makes it faster to answer the question “is node i adjacent to node j?”

Slide 8

Trees — Overview

• You probably know trees from PAD 2. In math terms, we can say a tree is a

kind of graph — acyclic, connected, one node designated “root”.

• Can be used to represent any kind of hierarchy, e.g.:

– Table of contents of a book.

– Hierarchical help system.

– Arithmetic expression.



CSCI 1323 April 25, 2005

Slide 9

Trees — Terminology

• Some terminology should be familiar: root, subtree, parent, children, root of

subtree.

• Other terms:

– Depth of node (distance from root), height of tree (maximum depth).

– Binary tree — at most two children per node.

– Full binary tree.

– Complete binary tree.

Slide 10

Trees — Recursive Definition

• Tree is either

– A single node, or

– The tree formed by combining a root r with (disjoint) subtrees t1 through

tn.



CSCI 1323 April 25, 2005

Slide 11

Computer-Friendly Representation of Trees

• Can of course use any representation that works for general graphs.

• Can also use array representation for binary trees: Number the nodes from 1

to N , and make a 2-by-N array for left/right children.

• Can also use pointer-based representation — simpler for binary trees, but

possible for general trees as well.

Slide 12

Tree Traversals

• For linear data structures (lists, arrays, etc.), basically only one reasonable

way to “walk through” the structure to visit each element.

• For trees, there are three “reasonable” ways:

– Preorder traversal (root first, then subtrees).

– In-order traversal (leftmost subtree first, then root, then rest).

– Postorder traversal (subtrees first, then root)

• Functions to perform any of these (e.g., and print each node as it is visited)

are almost trivial to write write recursively, much more difficult without

recursion.



CSCI 1323 April 25, 2005

Slide 13

Trees — Special Types

• Special types (familiar from PAD 2?):

– Sorted binary tree.

– Heap.

Slide 14

Trees and Recursion/Induction

• Easy to write other recursive algorithms to operate on trees — e.g., function

to find height of tree.

• If we use the recursive definition of a tree, we can prove things about trees

using induction. Example from textbook — prove that number of arcs is one

less than number of nodes.



CSCI 1323 April 25, 2005

Slide 15

Minute Essay

• Write a recursive function to count the number of nodes in a tree. Use the

datatype and functions from today’s class, or just describe in words.

• Reminder: Homework 7 due by 5pm.

Slide 16

Minute Essay Answer

• One solution:

int countNodes(Tree t) {

if (empty(t))

return 0;

else

return 1 + countNodes(left(t)) + countNodes(right(t));

}


