Administrivia

- Reminder: Quiz 1 Wednesday. Okay to use textbook and any notes. Questions will be about propositional logic.
- Homework 1 due by 5 pm today.
- Homework 2 on Web; due next Monday.

Slide 1

Propositional Logic Example, Continued

- (Finish section 1.2 problem 34.)

Why Predicate Logic?

- Propositional logic captures some of what we need to talk about things logically, but not everything.
- Example from classical logic:
"All humans are mortal. Socrates is human. Therefore Socrates is mortal."
No way to express this in propositional logic.
- What we want to add is some way to express the idea of something being true "for all x " or "for at least one x ".

Predicates

- Define "predicate" - boolean-valued function of one or more variables.
- Examples with integer variables:
$P(x)=(x>0)$
$Q(x, y)=(x<y)$
- Examples with people variables:
$P(x)$ means " x is a student in CSCI 1323".
$Q(x, y)$ means " x is taller than y ".

Quantifiers

- Universal quantification: $(\forall x) P(x)$ means "for all $x, P(x)$ is true."
- Existential quantification: $(\exists x) P(x)$ means "there exists an x such that $P(x)$ is true."
- How to decide whether such a statement is true? For propositional-logic

Slide 5

 connectives, we could write down a truth table for different values of the formulas being connected. That won't work here. (Why?)- Instead, notion of a "domain of interpretation" - (non-empty) range of values for the variable, definition of predicate(s).
$(\forall x) P(x)$ means - ?
$(\exists x) P(x)$ means - ?

A Few More Definitions

- Define "variables" (usually write them x, y, etc.) and "constants" (usually write them a, b, etc.) - elements of domain of interpretation.
- "Free variables" are those not within scope of a quantifier - e.g., x but not y in $(\forall y) P(x, y)$.

Slide 6 - Notice that we can change the variable in a quantification - it's a "dummy variable" - except we can't duplicate another variable.

- As in propositional logic, can define notion of well-formed formula (wff) "sensible" combination of predicates, quantifiers, connectives from propositional logic, and parentheses.
- How to express "All men are mortal", etc?

Interpretations

- Expressions involving predicates are true/false depending on "interpretation" (analogous to assigning values to statements in propositional logic):
- Domain of the interpretation (must not be empty).
- Assignment of a property of objects in the domain to each predicate.

Slide 7 - Assignment of a particular object to each constant symbol.

- Given an interpretation and an expression, we can (usually) compute a value for it. (What if there's at least one free variable?)

Interpretations - Example

- Suppose the domain is the integers, and $Q(x)$ means " x has an integer square root".
- What is the "truth value" of the following?
- $Q(4)$

Slide $8 \quad-Q(2)$

- $(\forall x) Q(x)$
- $(\exists x) Q(x)$
- $Q(4) \vee Q(2)$
- $Q(c)$
- $Q(x)$

English to Formulas

- Given people as a domain and predicates
- $C(x)$ meaning " x is a CS student"
- $D(x)$ meaning " x must pass CSCI 1323 to graduate"
- $B(x)$ meaning " x is a business major"

Slide 9

- $M(x)$ meaning " x likes math"
- Translate:
- "All CS majors must pass CSCI 1323 to graduate."
- "Some CS majors are business majors."
- "Some CS majors like math."
- "Not all CS majors like math."

Minute Essay

- Consider formulas $Q(a), Q(b),(\forall x) Q(x)$. Tell me whether each is true or false for the following interpretations.
- Interpretation 1: domain of interpretation is the integers, $a=1, b=2$, and $Q(x)$ means " $2 x$ is an even integer".

Slide 10

- Interpretation 2: domain of interpretation is the rational numbers, $a=1 / 2$, $b=1$, and $Q(x)$ means " $2 x$ is an even integer".

Minute Essay Answer

- Interpretation 1: domain of interpretation is the integers, $a=1, b=2$, and $Q(x)$ means " $2 x$ is an even integer". $Q(a)$ true, $Q(b)$ true, $(\forall x) Q(x)$ true.
- Interpretation 2: domain of interpretation is the rational numbers, $a=1 / 2$,

Slide 11
$b=1$, and $Q(x)$ means " $2 x$ is an even integer".
$Q(a)$ false, $Q(b)$ true, $(\forall x) Q(x)$ false.

