Administrivia

- Reminder: Homework 2 due at 5 pm. (Turn in with minute essays if done.)
- Class mailing list — everyone got a test message last Friday, right? Archives linked from class Web page.

Slide 1

Proof Techniques

- In chapter 1 we worked up a formal system for proving "meaningless" formulas - which can prove "meaningful" formulas as special cases.
- Most of the time, though, we want to prove something is valid in a particular context, and the procedure is less formal and makes use of context-specific

Abstract

Slide 2 additional info (e.g., definitions of terms such as "even integer").

- But keep in mind that less-formal proofs could be done in the millimeter-by-millimeter style of chapter 1.
- (Why are we doing this anyway? In part because CS almost surely will see theorems/proofs in CS theory classes, in part to help with that "mathematical maturity" goal . . . Goal is to recognize what makes a valid proof.)

Proof Techniques, Continued

- Suppose you have a "conjecture" (e.g., "all odd numbers greater than 1 are prime"). How to (try to) prove it?
- Well, first must sometimes decide whether to prove it. Do you think it's true?
- If it's a statement about all integers, etc., often helpful to start with "inductive

Slide 3

 reasoning" - try some examples and see what happens.- If one doesn't work? "Counterexample" that shows conjecture false.
- If all succeed? Just means you didn't find a counterexample. So, turn to "deductive reasoning" to prove - subject of first part of chapter 2.
- Lots of examples/problems will be simple stuff about integers. Why? Something where we supposedly all know the "context".

What Do We Mean By "Proof"?

- By "proof" we mean informal version, sometimes relying on context, of formal "this follows from that" arguments of chapter 1.
- Goal is to convince human reader. Sometimes a sequence of formulas will do. Other times some prose is needed to explain what they mean. (Ask yourself: Would this make sense to you?)
- (A bit of a rant:) If you are asked to show, e.g., that if $x=5$ then $x^{2}=25$, please do not start by writing $x^{2}=25$! (Why not?)

Exhaustive Proof / Proof By Cases

- Idea here is to prove by considering each "case" separately. Only works if there are finitely many. (Recall result from propositional logic that allows this.)
- Simple example: To show that for all integers x with $0 \leq x \leq 4, x^{2}<20$, five cases to consider.

Slide 5

- Slightly more complex example: To show something for all integers, can consider two cases, odd integers and even integers.
(Aside: How shall we define "even"? Is zero even?)
- Much more complex example: Computer-assisted proof of 4-color map theorem (1976, used almost 2000 separate cases).

Direct Proof

- Idea here is to show $P \rightarrow Q$ like we've been doing - assume P and derive Q - but less formally.
- Example: Show that for integers p and m, if p is even and m is positive, p^{m} is even.

Slide 6

Proof by Contraposition

- Idea is based on a derived rule from propositional logic: If $Q^{\prime} \rightarrow P^{\prime}$, then $P \rightarrow Q$.

So if proving $P \rightarrow Q$ is difficult, we can try proving $Q^{\prime} \rightarrow P^{\prime}$ instead.

- Example: Show that if m and n are integers and $m+n$ is even, either m

Slide 7 and n are both even or m and n are both odd.

Minute Essay

- Do you have more questions about material from chapter 1 ?

Slide 8

