Administrivia

- Homework deadlines extended - Homework 4 due Monday, Homework 5 next Friday.
- Reminder: Quiz 3 Friday.

Slide 1

- Midterm changed to $3 / 24$ (Friday after spring break). Review sheet will be on Web.

What To Write Down for Proofs

- First write down what you are given, what you are to prove - possibly turning words into formulas.
Example - "the sum of consecutive squares \ldots " becomes $\left(n^{2}+(n+1)^{2}\right.$.
- Then write down a logical argument, starting with what you are given and ending with what you are to prove.
Similar to what we did with formal logic, but less structured.
- Examples - answers in back of textbook, examples from board in class.

Recursive Definitions — Review

- Recall examples from last time - recursive definitions of sequences, sets, operations, algorithms.
- For sets, notice that this means that to claim that something is in the set you need to be able to show that it's either a base case or can be obtained from a base case by applying one of the "rules" that define the set.

Recursive Algorithms, More Examples

- Two good examples in text - selection sort and binary search.
- Another example - "quicksort".
// pre: i, j are valid indices for L
// post: L(i) through $L(j)$ are "sorted"
qsort (list L, index i, index j)
Slide 4
if (i >= j)
else
elem pivot $=\mathrm{L}(\mathrm{i})$
// rearrange L(i+1) through L(j) s.t.:
// L(i) .. L(m-1) <= pivot
// L(m) = pivot
// L(m+1) .. L(j) >= pivot index $m=\operatorname{split}($ pivot, $L, i, j)$ qsort (L, i, m-1) qsort (L, m+1, j)
end qsort

Recurrence Relations

- Recall the silly example of defining a sequence recursively:

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide 5

Expanding out some terms, it seems fairly obvious that an equivalent definition would be $S(n)=10^{n-1}$ - a "closed-form solution" to the recurrence relation given in the second line of the definition.

- We'll look at various ways to get from a recursive definition to a closed-form one, because the latter are easier to compute, but sometimes it will be much easier to write down the definition recursively.

Solving Recurrence Relations, Continued

- For the silly example

$$
\begin{aligned}
S(1) & =1 \\
S(n) & =S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide 6
we guessed a solution of $S(n)=10^{n-1}$. Can we verify that this is the same as the recursive definition? yes, via a proof by induction...

- Call this method "expand, guess, verify".
- Try another example - section 2.4 problem 75.

Minute Essay

- We started a proof by induction that the guessed closed-form solution for problem $75\left(T(n)=2^{n}-1\right)$ matches the recursive definition:

Base case: $2^{1}-1=1=T(1)$
Inductive step: Assume $T(k)=2^{k}-1$ and show $T(k+1)=2^{k+1}-1$.
Slide 7
Complete the proof.

Minute Essay Answer

- $T(k+1)=2 T(k)+1$ (using recursive definition). $2 T(k)+1=2\left(2^{k}-1\right)+1$ (using inductive hypothesis).
$2\left(2^{k}-1\right)+1=2^{k+1}-2+1=2^{k+1}+1$, which completes the proof.

Slide 8

