Administrivia

- Reminder: Homework 4 due Monday.

Slide 1

Solving Recurrence Relations — Review/Recap

- Goal is to take a recursive definition of a sequence and come up with a"closed-form" (non-recursive) definition of the same sequence.
- One method is what textbook calls "expand, guess, verify" - example last time.

Slide 2

Solving Recurrence Relations, Continued

- Is there another way? In general, probably not, but there are some formulas for some frequently-occurring special cases.
- One is "first-order linear" recurrence relations. If

$$
S(n)=c S(n-1)+g(n)
$$

Slide 3

then we can show (see textbook for derivation) that

$$
S(n)=c^{n-1} S(1)+\sum_{i=2}^{n}\left(c^{n-i} g(i)\right)
$$

- Apply this to the two problems we did earlier - we should get the same results.

Analysis of Algorithms, Overview

- Often there's more than one way to solve a given problem, i.e., more than one algorithm. Which one is "best"? Depends on what "best" means. If we mean "fastest":
- A useful measure of approximate execution time is worst-case (or sometimes

Slide 4 average-case) execution time expressed as a function of "problem size" (e.g., for operations on array, size of array) - "time complexity" of algorithm.
(Another measure is "space complexity".)

- Customary to skip over housekeeping operations and count only "important stuff" - arithmetic operations, comparisons, etc.
Also customary to "round off" the estimate to an "order of magnitude" - for a problem of size N, we say an algorithm is $O(f(N))$ if execution time is $f(N)$.

Analysis of Algorithms, Examples

- Example - computing a sum of N numbers. How many additions?
- Example - sequential search of array of size N. How many comparisons (worst case)?
- Example - binary search of sorted array of size N. How many comparisons

Slide 5 (worst case)?

Minute Essay

- None - quiz.

