
CSCI 1323 March 6, 2006

Slide 1

Administrivia

• Reminder: Homework 4 due 5pm today.

Slide 2

Analysis of Algorithms — Review/Recap

• Often useful to be able to estimate algorithm’s execution time as a function of

“problem size”.

Customary to skip over housekeeping operations and count only “important

stuff” — arithmetic operations, comparisons, etc.

• Useful in comparing efficiency of different algorithms for same problem. Also

useful in determining feasibility of single algorithm. (E.g., something that

requires evaluating N ! possibilities will not be practical for large N .)



CSCI 1323 March 6, 2006

Slide 3

Analysis of Algorithms, Longer Example

• Look at several algorithms for computing ab, for b a positive integer. First

version:

double exp(double a, int b) {

double temp = a;

for (int i = 1; i < b; ++i)

temp *= a;

return temp;

}

• How many multiplications needed?

Slide 4

Analysis of Algorithms, Longer Example Continued

• We could also express this recursively:

double exp(double a, int b) {

if (b == 1)

return a;

else

return a * exp(a, b-1);

}

Does this work? (Yes. Why?)

• How to figure out how many multiplications? Define and solve a recurrence

relation.



CSCI 1323 March 6, 2006

Slide 5

Analysis of Algorithms, Longer Example Continued

• We could also express this recursively another way:

double exp(double a, int b) {

if (b == 1)

return a;

else {

double temp = exp(a, b/2);

if (b % 2 == 0) return temp * temp;

else return temp * temp * a;

}

}

Does this work? (Yes. Why?)

• How to figure out how many multiplications? Define and solve a recurrence

relation.

Slide 6

Analysis of Algorithms, Continued

• More complicated (but faster) ab algorithm — example of “divide and

conquer” algorithms. General form:

if (base case)

solve

else {

split into 2 subproblems

solve subproblem(s)

merge subsolutions

}

• In general, recurrence relation for work involved has the form

S(n) = cS(n/2) + g(n), for n = 2m, n > 1

for which we can derive a formula — equation (6) on p. 152.



CSCI 1323 March 6, 2006

Slide 7

Analysis of Algorithms, Continued

• Example — recurrence relation for exponentiation algorithm:

M(1) = 0

M(n) = 1 +M(n/2), for n = 2m, n > 1

Slide 8

Minute Essay

• How many comparisons are needed to sort an array of N elements using

bubble sort?:

for (int i = 0; i < N-1; ++i) {

for (int j = 0; j < N-1-i; ++j) {

if (a[j+1] < a[j])

swap(a[j+1], a[j]);

}

}



CSCI 1323 March 6, 2006

Slide 9

Minute Essay Answer

• N-1 + N-2 + N-3 + . . . + 0, i.e., (N-1)*N/2. (One comparison per trip

through the inner loop, and the number of inner-loop trips for each trip

through the outer loop depends on the value of i.)


