Administrivia

- Reminder: Homework 4 due 5pm today.

Slide 1

Analysis of Algorithms — Review/Recap

- Often useful to be able to estimate algorithm's execution time as a function of "problem size".
Customary to skip over housekeeping operations and count only "important stuff" - arithmetic operations, comparisons, etc.

Slide 2

- Useful in comparing efficiency of different algorithms for same problem. Also useful in determining feasibility of single algorithm. (E.g., something that requires evaluating N ! possibilities will not be practical for large N.)

Analysis of Algorithms, Longer Example

- Look at several algorithms for computing a^{b}, for b a positive integer. First version:

```
double exp(double a, int b) {
    double temp = a;
    for (int i = 1; i < b; ++i)
            temp *= a;
        return temp;
}
```

- How many multiplications needed?

Analysis of Algorithms, Longer Example Continued

- We could also express this recursively:

```
double exp(double a, int b) {
    if (b == 1)
        return a;
    else
        return a * exp(a, b-1);
}
Does this work? (Yes. Why?)
```

- How to figure out how many multiplications? Define and solve a recurrence relation.

Analysis of Algorithms, Longer Example Continued

- We could also express this recursively another way:

```
double exp(double a, int b) {
    if (b == 1)
        return a;
    else {
        double temp = exp (a, b/2);
        if (b % 2 == 0) return temp * temp;
        else return temp * temp * a;
    }
}
Does this work? (Yes. Why?)
```

- How to figure out how many multiplications? Define and solve a recurrence relation.

Analysis of Algorithms, Continued

- More complicated (but faster) a^{b} algorithm — example of "divide and conquer" algorithms. General form:

```
if (base case)
            solve
else {
        split into 2 subproblems
        solve subproblem(s)
        merge subsolutions
    }
```

- In general, recurrence relation for work involved has the form

$$
S(n)=c S(n / 2)+g(n), \text { for } n=2^{m}, n>1
$$

for which we can derive a formula - equation (6) on p. 152.

Analysis of Algorithms, Continued

- Example - recurrence relation for exponentiation algorithm:

$$
\begin{aligned}
& M(1)=0 \\
& M(n)=1+M(n / 2), \text { for } n=2^{m}, n>1
\end{aligned}
$$

Slide 7

Minute Essay

- How many comparisons are needed to sort an array of N elements using bubble sort?:

```
for (int i = 0; i < N-1; ++i) {
    for (int j = 0; j < N-1-i; ++j) {
        if (a[j+1] < a[j])
                        swap(a[j+1], a[j]);
        }
    }
```


