Administrivia

- "Useful links" page has link to Web site with more counting examples.
- Homework 7 due today. Homework 8 on Web; due Monday April 17.

Slide 1

Permutations

- We might want to know how many ways we can choose an ordered sequence of r objects, chosen from n possibilities with no repeats. Call this $P(n, r)$. Example: How many 7-digit phone numbers have no repeated digits?
- Can we come up with a general formula? (Of course. Let's derive one.)
- Look at some boundary cases -r $=n, r=0, r=1$, etc. (We'll need to agree that $0!=1$.)

Combinations

- Or we might want to know how many ways we can choose an unordered collection of r objects, chosen from n possibilities with no repeats. Call this $C(n, r)$.
Example: How many ways can we draw 5 cards from a deck of 52 ?

Slide 3

- Can we come up with a general formula? (Of course. Let's derive one.)
- Again look at some boundary cases $-r=n, r=1, r=0$.
- (Another common notation for this is $\binom{n}{r}$ (" n choose r ").)

Permutations Versus Combinations

- In general: If order matters, it's a permutation; if order doesn't matter, it's a combination.
- (Contrast "how many phone numbers with no repeated digits" (order matters) with "how many 5-card hands?" (order doesn't matter).)

Potential Pitfall - Counting Things Twice

- A problem is that some proposed solutions sound reasonable but actually manage to count some things twice, or don't count some things at all.
- Example: example 55 part (d).

Slide 5

Permutations and Combinations - Eliminating

 Duplicates- In general it can be interesting to try to figure out how to "eliminate duplicates" - i.e., account for the fact that one way of counting things produces a lot of duplicate results.

Slide 6

- Example: How many ways can we rearrange the letters in the word "voodoo"?

Permutations and Combinations With Repetitions

- Definitions of $P(n, r)$ and $C(n, r)$ specified "without repeats". What if we want to allow repeats?
- Permutations: How many ways can we choose an ordered sequence of r things from n possibilities, if we allow repeats? (Not too tough, right?)

Slide 7

- Combinations: How many ways can we choose an unordered collection of r things from n possibilities, if we allow repeats? This is trickier. We'll use a clever idea from example 58 (next time).

Minute Essay

- None - quiz.

Slide 8

