Administrivia

- (None?)

Slide 1

Permutations and Combinations With Repetitions

- Definitions of $P(n, r)$ and $C(n, r)$ specified "without repeats". What if we want to allow repeats?
- For permutations, not too tough - n^{r} ways to choose an ordered sequence of r things from n possibilities, if we allow repeats?

Slide 2

- For combinations, it's trickier. How many ways can we choose an unordered collection of r things from n possibilities, if we allow repeats? Use a clever idea from example 58.

Permutations and Combinations, More Examples

- Section 3.4, problems 31, 66.

Slide 3

Probability — Equally-Likely Outcomes

- Basic definition: If S ("sample space") is a set of equally likely outcomes of some action (e.g., possible results of tossing a fair coin), and E ("event") is a subset of S, then we define the probability of E as

$$
P(E)=\frac{|E|}{|S|}
$$

Examples: Sequences of coin tosses, 5-card "hands" chosen from 52-card deck, etc.

- Note that $0 \leq P(E) \leq 1$. (Why?) When is $P(E)=0$? When is $P(E)=1$?
- Note that we can apply anything we know about sizes of sets. (E.g., if E_{1} and E_{2} are disjoint, what is $P\left(E_{1} \cup E_{2}\right)$ in terms of $P\left(E_{1}\right)$ and $P\left(E_{2}\right)$?)

Examples

- If a fair coin is tossed four times, what's the probability of getting four heads?
- In a group of n people, what's the probability that at least two people have the same birthday?

Slide 5

Minute Essay

- Given 20 words, how many 6 -word phrases can you make up, if no repeated words are allowed? ("refrigerator magnet poetry")
Okay to express answers in terms of $P(n, r)$ and/or $C(n, r)$ or factorials.
- Suppose you select 6 marbles at random from a jar containing red, blue, yellow, and green marbles (at least 6 each). How many ways can this selection be made?

