Administrivia

- Reminder: Homework 8 due Wednesday.
- Reminder: Quiz 5 Wednesday. Questions from 3.4, 3.5.

Slide 1

Probability — Equally-Likely Outcomes (Review)

ullet Basic definition: If S ("sample space") is a set of equally likely outcomes of some action (e.g., possible results of tossing a fair coin), and E ("event") is a subset of S, then we define the probability of E as

$$P(E) = \frac{|E|}{|S|}$$

- • Note that $0 \leq P(E) \leq 1$. (Why?) When is P(E) = 0? When is P(E) = 1?
- ullet Note that we can apply anything we know about sizes of sets. (E.g., if E_1 and E_2 are disjoint, what is $P(E_1 \cup E_2)$ in terms of $P(E_1)$ and $P(E_2)$?)

Probability — Not-Equally-Likely Outcomes

 One approach — extend previous definition (size of "event" divided by size of sample space) by adding duplicates to sample space for outcomes that are more likely.

ullet Another approach — "probability distribution": For each x in sample space S, assign x a probability p(x), such that

$$0 \le p(x) \le 1$$
, for all $x \in S$

$$\sum_{x \in S} p(x) = 1$$

ullet Now for event E ($E\subseteq S$), we have

$$P(E) = \sum_{x \in E} p(x)$$

• Note that equally-likely-outcomes definition is a special case of the above.

Conditional Probability

ullet We could also consider, for two possibly related events E_1 and E_2 , how likely it is that E_2 happens given that E_1 has happened — "conditional probability":

$$P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}$$

Intuitive idea is that here the "sample space" is limited to E_1 .

- If it turns out that $P(E_2|E_1)=P(E_2)$, we call E_1 and E_2 "independent events". In this case, we can derive that $P(E_1\cap E_2)$ is what?
- Notice resemblance between this and multiplication principle, and between rule for $P(E_1 \cup E_2)$ and addition principle.

Slide 3

Examples

If a fair coin is tossed four times, what's the probability of getting four heads?
What's the probability that the last toss is a head given that the first three are heads?

Slide 5

Expected Value

- You probably know about computing weighted averages from classes in which your grade is computed as, e.g., 50% exams, 20% homework, etc.
- ullet "Expected value" is a generalization of this: Given a sample space S, a "random variable" X (function from S to $\mathbb R$), and a probability distribution p, define expected value of X thus:

 $E(X) = \sum_{x \in S} X(x)p(x)$

Intuitive idea — "average" value, where the average is weighted by how likely the different values are.

Average-Case Analysis of Algorithms

 Previously we talked about estimating worst-case execution time of algorithms — amount of "work" as a function of input size.

ullet We could also talk about average-case amount of work, based on idea of expected value: Sample space is set of all possible inputs. For input x, X(x) is the amount of work for x and p(x) is the probability of x.

Example — example 68 in textbook.

Slide 7

Minute Essay

• If a fair coin is tossed four times, what's the probability of getting two heads and two tails given that there's at least one head and at least one tail?

Minute Essay Answer

• Sample space has 16 elements (different outcomes of flipping coin four times).

If E_1 includes outcomes with at least one head and at least one tail, $P(E_1)$ is 14/16, because E_1 is all of the sample space except the "all heads" and "all tails" outcomes.

If E_2 includes outcomes with two heads and two tails, $P(E_2)$ is 6/16, because there are C(4,2)=6 ways to choose the two tosses that come up heads.

 $E_1 \cap E_2$ is just E_2 .

So from definition, $P(E_2|E_1) = (6/16)/(14/16)$, i.e., 6/14.