Administrivia

- Reminder: Homework 8 due Wednesday.
- Reminder: Quiz 5 Wednesday. Questions from 3.4, 3.5.

Slide 1

Probability — Equally-Likely Outcomes (Review)

- Basic definition: If S ("sample space") is a set of equally likely outcomes of some action (e.g., possible results of tossing a fair coin), and E ("event") is a subset of S, then we define the probability of E as

$$
P(E)=\frac{|E|}{|S|}
$$

- Note that $0 \leq P(E) \leq 1$. (Why?) When is $P(E)=0$? When is $P(E)=1$?
- Note that we can apply anything we know about sizes of sets. (E.g., if E_{1} and E_{2} are disjoint, what is $P\left(E_{1} \cup E_{2}\right)$ in terms of $P\left(E_{1}\right)$ and $P\left(E_{2}\right)$?)

Probability — Not-Equally-Likely Outcomes

- One approach — extend previous definition (size of "event" divided by size of sample space) by adding duplicates to sample space for outcomes that are more likely.
- Another approach - "probability distribution": For each x in sample space S,

Slide 3

 assign x a probability $p(x)$, such that$$
\begin{gathered}
0 \leq p(x) \leq 1, \text { for all } x \in S \\
\sum_{x \in S} p(x)=1
\end{gathered}
$$

- Now for event $E(E \subseteq S)$, we have

$$
P(E)=\sum_{x \in E} p(x)
$$

- Note that equally-likely-outcomes definition is a special case of the above.

Conditional Probability

- We could also consider, for two possibly related events E_{1} and E_{2}, how likely it is that E_{2} happens given that E_{1} has happened - "conditional probability":

$$
P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{1}\right)}
$$

Slide $4 \quad$ Intuitive idea is that here the "sample space" is limited to E_{1}.

- If it turns out that $P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right)$, we call E_{1} and E_{2} "independent events". In this case, we can derive that $P\left(E_{1} \cap E_{2}\right)$ is - what?
- Notice resemblance between this and multiplication principle, and between rule for $P\left(E_{1} \cup E_{2}\right)$ and addition principle.

Examples

- If a fair coin is tossed four times, what's the probability of getting four heads? What's the probability that the last toss is a head given that the first three are heads?

Slide 5

Expected Value

- You probably know about computing weighted averages - from classes in which your grade is computed as, e.g., 50% exams, 20% homework, etc.
- "Expected value" is a generalization of this: Given a sample space S, a "random variable" X (function from S to \mathbb{R}), and a probability distribution p, define expected value of X thus:

$$
E(X)=\sum_{x \in S} X(x) p(x)
$$

Intuitive idea - "average" value, where the average is weighted by how likely the different values are.

Average-Case Analysis of Algorithms

- Previously we talked about estimating worst-case execution time of algorithms - amount of "work" as a function of input size.
- We could also talk about average-case amount of work, based on idea of expected value: Sample space is set of all possible inputs. For input $x, X(x)$ is the amount of work for x and $p(x)$ is the probability of x.

Example - example 68 in textbook.

Minute Essay

- If a fair coin is tossed four times, what's the probability of getting two heads and two tails given that there's at least one head and at least one tail?

Slide 8

Minute Essay Answer

- Sample space has 16 elements (different outcomes of flipping coin four times).

If E_{1} includes outcomes with at least one head and at least one tail, $P\left(E_{1}\right)$ is $14 / 16$, because E_{1} is all of the sample space except the "all heads" and "all

Slide 9

 tails" outcomes.If E_{2} includes outcomes with two heads and two tails, $P\left(E_{2}\right)$ is 6/16, because there are $C(4,2)=6$ ways to choose the two tosses that come up heads.
$E_{1} \cap E_{2}$ is just E_{2}.
So from definition, $P\left(E_{2} \mid E_{1}\right)=(6 / 16) /(14 / 16)$, i.e., $6 / 14$.

