

Slide 1

Slide 2

Properties of Binary Relations

- ρ is *reflexive* if $x \rho x$ for all $x \in S$.
- ρ is symmetric if $(x \ \rho \ y) \ \rightarrow \ (y \ \rho \ x)$ for all $x, y \in S$.
- ρ is *transitive* if $(x \rho y) \land (y \rho z) \rightarrow (x \rho z)$ for all $x, y, z \in S$.
- ρ is antisymmetric if $(x \rho y) \land (y \rho x) \rightarrow (x = y)$ for all $x, y \in S$.
- Can combine these in interesting ways

Slide 4

- Idea: Generalize idea of "ordering" to include relations where not all pairs of elements can be ordered.
- Definition: ρ is a partial ordering if it's reflexive, antisymmetric, and transitive.
- Examples: \leq on integers or reals, \subseteq on sets.

Slide 5

 Minute Essay

 • None – quiz.