
CSCI 1323 April 21, 2006

Slide 1

Administrivia

• Homework 9 to be on Web later today; due next Friday.

• In the reading for today (4.2 and 4.4), it’s okay to skim/skip the material on

PERT charts (p. 272), permutation functions (pp. 300–302), and how many

functions (pp. 302–306).

Slide 2

Recap — Binary Relations

• Idea of a binary relation is to express relationship between pairs of elements

of a set.

• Several properties of interest — reflexivity, symmetry, transitivity, etc. — which

allow us to define some special cases:

– Partial orderings (generalization of “less than or equal to”) — useful in

working out how we could put things “in order”, e.g., a set of tasks with

(some) ordering dependencies.

– Equivalence relations (generalization of “equals”).

CSCI 1323 April 21, 2006

Slide 3

Topological Sorting

• Idea here is to take a partial ordering and find a way to extend it to a “total”

ordering (i.e., add pairs so that for every x and y either x ρ y or y ρ x. How

is this useful? e.g., find a way to “schedule” interdependent tasks.

• Notice that there could be more than one way to do this for a given partial

ordering.

• How to do this? Next slide . . .

Slide 4

Topological Sorting, Continued

• Algorithm for finding a way to extend a partial ordering — “topological sort”:

• Start with set S and partial ordering ρ on S. Idea is to turn S into a sequence

x1, x2, . . . such that (xi ρ xj) → (i ≤ j).

• The algorithm might look like this in pseudocode:

while (S not empty)

pick a minimal element x in S

make it the next element of the sequence and remove it from S

end while

(“Minimal” here means an element such that aren’t any that are smaller.)

• Does this work? i.e., does it produce an ordering that extends ρ? True if we

can be sure that for x and y with x ρ y x is picked before y.

CSCI 1323 April 21, 2006

Slide 5

Functions

• Formal definition: f : S → T is a subset of S × T , such that for every

s ∈ S, there’s exactly one (s, t) in the subset. Write f(s) = t.

• Terminology: S is f ’s domain. T is f ’s co-domain (or range).

• Examples:

– f : Z→ Z defined by f(x) = x2.

– g : N→ R defined by g(x) =
√
x.

– h : P → (P × P) (where P is the set of people in the world) defined by

h(x) = ((bio?)mother of x, (bio?)father of x).

• Idea easily extends to functions of more than one variable.

Slide 6

Properties of Functions

• For f : S → T , f is onto if for every t ∈ T there’s an s ∈ S with f(s) = t.

“f covers everything in T .”

• For f : S → T , f is one-to-one if for every s, s′ ∈ S,

f(s) = f(s′) → s = s′. “f maps different things in S to different things

in T ”.

• If f is both one-to-one and onto, call it a bijection.

CSCI 1323 April 21, 2006

Slide 7

Composition of Functions

• For f : S → T and g : T → U , can define g ◦ f :?→?:

(g ◦ f)(s) = g(f(s)).

Slide 8

Function Inverses

• If f is a bijection, can define inverse of f , f−1 : T → S such that

f−1 ◦ f = identity function on S

f ◦ f−1 = identity function on T

• Can we do this if f is not a bijection?

CSCI 1323 April 21, 2006

Slide 9

Set Cardinality, Revisited

• We can say that sets S and T have the same cardinality (“same size”) if there

is a bijection f : S → T — more formal/precise version of earlier definition,

works for both finite and infinite sets.

• If we can define a one-to-one f : S → T , then the cardinality of S is less

than or equal to the cardinality of T .

• Recall that we had a “smallest” infinite set N, and a strictly “larger” infinite set

R. Are there any bigger sets?

Yes. Recall that if S is finite with n elements, P(S) is strictly bigger (2n

elements). True for infinite sets as well — Cantor’s theorem.

• Notice that this defines an equivalence relation on sets.

Slide 10

Order of Magnitude of Functions

• By now you’ve probably heard “this is an O(N) algorithm”, etc., many times.

Here we’ll define it formally.

• First: When we talked about analysis of algorithms (chapter 2), we came up

with estimates of “total work” of the algorithm as a function of size of input

(“problem size”). Useful and interesting, but a bit fine-grained — what we

usually care about is behavior as problem size gets very big.

• So — idea is to come up with an “order of magnitude” for functions,

analogous to “order of magnitude” for numbers. If the functions for two

algorithms have the same order of magnitude, the functions are in some

sense about equally fast/slow.

• Example: If you have two algorithms for processing an image with N pixels,

one that takes time proportional to 1000N and one that takes time

proportional to time N2, which do you pick? (Does the size of N matter?)

CSCI 1323 April 21, 2006

Slide 11

Order of Magnitude of Functions, Continued

• How to determine an order of magnitude for functions?

If we look at graphs of functions, we might notice that we can classify them

into groups based on their “shape”.

For nondecreasing functions, we also notice that some shapes “grow” faster

than others.

(Compare x2, 10x2, x3, etc.)

• Idea is that we want functions that have the same shape to have the same

order of magnitude.

Slide 12

Order of Magnitude of Functions, Continued

• Formal definition:

Write f = Θ(g) to mean that f and g have the same order magnitude.

Define to be true iff there are positive constants n0, c1, c2 such that for all

x ≥ n0

c1g(x) ≤ f(x) ≤ c2g(x)

In other words, these functions are roughly proportional to each other.

• Can guess values c1, c2 and more or less show that they work by plotting

resulting curves — but to really show that the definition holds, must do

algebra to show. Example next time?

• Of course this is incredibly tedious, so people have come up with (and

proved) general rules for polynomials, other common functions.

CSCI 1323 April 21, 2006

Slide 13

Minute Essay

• For each of the following functions, is it one-to-one? onto?

– f : R→ R defined by f(x) = |x|.
– f : R+ → R+ defined by f(x) =

√
x. (R+ is the positive real

numbers.)

Slide 14

Minute Essay Answer

• f : R→ R is neither one-to-one (|1| = | − 1|, for example) nor onto

(there’s no x such that |x| = −1, for example).

• f : R+ → R+ defined by f(x) =
√
x is both one-to-one and onto.

