Administrivia

- Reminder: Quiz 6 Wednesday. Likely topics - material about relations and functions from chapter 4.
- In the reading for today (5.1), it's okay to skim/skip the material on planar graphs (pp. 352-356).

Slide 1

Order of Magnitude of Functions, Recap

- Formal definition:

Write $f=\Theta(g)$ to mean that f and g have the same order magnitude.
Define to be true iff there are positive constants n_{0}, c_{1}, c_{2} such that for all $x \geq n_{0}$

Slide 2

$$
c_{1} g(x) \leq f(x) \leq c_{2} g(x)
$$

In other words, these functions are roughly proportional to each other.

- Applying definition formally is possible, but lots of tedious algebra. Examples in text.

"Big-O Notation"

- The $O(f(N))$ you see in computer science is similar, but it's a "less than or equal" rather than a "strictly equal" - i.e., $f(N)=O(g(N))$ means f 's order of magnitude is no bigger than g 's (and might be less).
Formally, true iff there are positive constants n_{0} and c such that for all

Slide 3

$x \geq n_{0}$

$$
f(x) \leq c g(x)
$$

- Interesting (?) to observe that Θ is an equivalence relation, and O is a partial ordering.

Order of Magnitude of Functions, Continued

- So we have a way to compare orders of magnitude of functions, with an "equals" (Θ) and a "less-than-or-equal-to" (O).
- In general, function's order of magnitude determined by fastest-growing term.

Some categories of interest:
Slide 4

- x^{2} grows faster than x, x^{3} faster than x^{2}, etc. x^{2} and $c x^{2}$ "the same".
- $\log _{b} x$ grows more slowly than x.
- b^{x} grows faster than all polynomials.
- x^{x} grows faster than all b^{x}.

Graphs - Overview

- In some contexts, "graph" means a plot of a function, other pictorial representation of data.
- In other contexts, it's an abstract idea meant to represent relationships among a set of things. Examples:

Slide 5

- Hasse diagrams of chapter 4.
- Airline route maps.
- Simplified maps showing driving distances between cities.

Common idea - set of things (set elements, cities) and a notion that some pairs of them are connected somehow. Details we don't care about have been "abstracted out".

Graphs — Definition

- Formal definition (undirected graph):
- Nonempty set N of nodes (vertices).
- Set A of arcs (edges).
- Function $f: A \rightarrow\{\{x, y\} \mid x, y \in N\}$ (unordered pairs of nodes).

Slide $6 \quad$ Notice that we can have "loops" and also "parallel arcs".

- Variations/extensions:
- Directed graph — edges are ordered pairs (i.e., "one-way").
- Labeled graph — each vertex has some associated info ("label").
- Weighted graph — each edge has some associated info ("weight").

Graphs - Terminology

- Adjacent nodes (arc from one to the other).
- Loop, parallel arc.
- Simple graph (no loops or parallel arcs).

Slide 7

- Complete graph (every pair of nodes adjacent).
- Path (sequence of arcs), connected graph.
- Cycle, acyclic graph.

Isomorphic Graphs

- What we care about is the relationship between nodes and arcs, not exact visual representation.
- Can formalize this as "isomorphism" - two graphs are isomorphic if one is just a "relabeling" of the other.

Slide 8 - Formal definition is in terms of one-to-one functions, one from nodes of graph G_{1} to nodes of graph G_{2} and one from arcs of graph G_{1} to arcs of graph G_{2}. Idea is that if an arc connects two nodes in G_{1}, the corresponding arc in G_{2} connects the corresponding nodes.

Computer-Friendly Representation of Graphs

- For humans, representing graphs pictorially usually works well. For computers, other representations work better.
- Key idea is to come up with a way to represent the essential information set of nodes and which ones are connected.

Slide 9

Adjacency Matrices

- Idea is to put the n nodes in some (arbitrary) order and define an n-by- n matrix A such that $A_{i j}$ is the number of arcs connecting node i and node j.
- For an undirected graph, what property does this matrix have? that it might or might not have for a directed graph?

Slide 10

- Variation: For a weighted graph with no parallel arcs, we could let $A_{i j}$ be the weight of the arc from node i to node j.

Adjacency Lists

- Idea is to again put n nodes in some arbitrary order, but rather than a matrix define an array of n lists, one for each node, with the list for node i containing all nodes j that are adjacent to node i. Parallel arcs mean "duplicate" entries.

Slide 11

Adjacency Matrix Versus Adjacency List

- Which uses less space?
- Which makes it faster to answer the question "is node i adjacent to node j ?"

Minute Essay

- Which of the following functions are $O\left(N^{2}\right)$?
$g(N)=100 N^{2}+N-1000$
$h(N)=N^{3}$
- Which of the following functions are $O\left(2^{N}\right)$?

Slide 13
$f(N)=2^{N}-5$
$h(N)=N!$

Minute Essay Answer

- $O\left(N^{2}\right)$?
$g(N)=100 N^{2}+N-1000$ - yes
$h(N)=N^{3}-$ no
- $O\left(2^{N}\right)$?
$f(N)=2^{N}-5-$ yes
$h(N)=N!-$ no

