Administrivia

• Final exam May 6 (Saturday) at 8:30am. Review sheet describing format and topics on Web.

- Homework 9 due today at 5pm.
- Solutions for homeworks and midterm in hardcopy form. All but Homework 9 to be available/distributed by today, along with graded work. Homework 9 solution will be out first thing Tuesday.

Slide 1

More Administrivia

- Numeric grade is "points earned" divided by "maximum points" on the following:
 - Two exams (100 points and 200 points).
 - Quizzes (50 points lowest score dropped).
 - Class attendance/participation 50 points.
 - Homework 240 points.
- Letter grades assigned "on a curve" (no attempt to fit a bell curve, but median numeric score is about a B-). Conservative (i.e., low) estimate of where you are now to be sent by e-mail today.
- Extra-credit problems to be posted on Web Monday, due the following Monday. Can only help your grade — adding up to 30 points to "points earned" without changing "maximum points".

More Administrivia

- Questions about the final, homework, grades, etc.?
- Should there be a review session sometime next week? (No.)

Slide 3

Recap — Course Goals

- For CS majors, learn math needed for later courses. Something of a "grab bag" of topics, but you probably *will* see some of this material again. For non-CS majors, introduction to some math you might otherwise not encounter.
- Increase "mathematical maturity" in part, this is the ability to think logically, especially valuable to people in CS (also other science, engineering, math), but good for others too.
- A recurring theme is to take something that might be difficult to think through from first principles and turn it into a symbol-manipulation problem.

Topics and Why We Covered Them

• Formal logic:

- Understanding connectives/tautologies related to simplifying boolean expressions, e.g., in programs.
- Example of "formal system" CS people will deal with others, e.g., formal grammars (basis for compilers, e.g.).
- "Mathematical maturity".

(Aside: Dr. Myers recommends that CS majors consider the symbolic logic course as one of your math electives. Students who take it seem to find it worthwhile.)

Topics and Why We Covered Them, Continued

- Proof techniques (direct proof, contraposition, proof by contradiction, proof by induction):
 - Background for courses that involve proofs.
 - "Mathematical maturity".

Slide 6

- Program correctness:
 - Another way to think about programs even if not applied formally, E.g.,
 "loop invariant" idea recall problem with black/white marbles.

Topics and Why We Covered Them, Continued

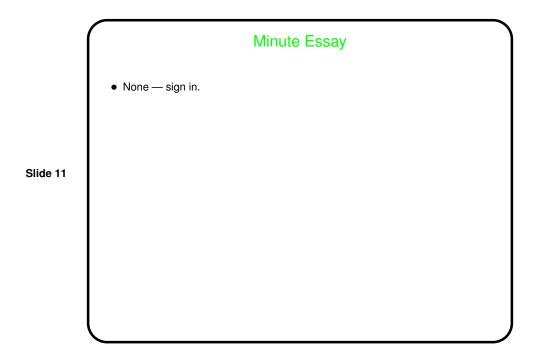
- Recursion:
 - Recursive definitions used in theory courses.
 - Recursive algorithms sometimes easier to express than iterative equivalents (e.g., anything working with trees).

Slide 7

- Analysis of algorithms:
 - Simplified version, but gives background for discussions in programming classes.
- Recurrence relations:
 - Useful in doing "analysis of algorithms" on recursive algorithms.

Topics and Why We Covered Them, Continued

- Sets, counting, and probability:
 - General background. (Stuff about infinite sets is a tangent, but an interesting one?)
 - Often useful to know how many cases must be considered.
 - "Expected value" calculations useful in doing analysis of algorithms for average case (rather than worst case, as we did before).


Topics and Why We Covered Them, Continued

- Relations and functions:
 - General background.
 - Background for formal study of relational databases. (Definitions of set operations needed here too.)

Slide 9

Topics and Why We Covered Them, Continued

- Graphs and trees:
 - Abstraction behind some key data structures.
 - Trees you may have used already.
 - Many uses for graphs serialization in Java, garbage collection, shortest path through a network, etc., etc.

