CSCI 1323 (Discrete Structures), Spring 2003 Derivation Rules for Predicate Logic

From	Can derive	Name/abbreviation	Restrictions on use
$(\forall x)P(x)$	P(t), where t is a	Universal	If t is a variable, it
	variable or constant	instantiation - ui	must not fall within
	symbol		the scope of a
			quantifier for t .
$(\exists x)P(x)$	P(t), where t is a	Existential	Must be the first rule
	variable or constant	instantiation — ei	used that introduces
	symbol not		t.
	previously used in		
	proof sequence		
P(x)	$(\forall X)P(x)$	Universal	P(x) has not been
		generalization - ug	deduced from any
			hypotheses in which
			x is a free variable,
			nor has $P(x)$ been
			deduced by ei from
			any wff in which x is
			a free variable.
P(x) or $P(a)$, where	$(\exists X)P(x)$	Existential	To go from $P(a)$ to
P(a) is a constant		generalization — eg	$(\exists x)P(x), x \text{ must not}$
symbol			appear in $P(a)$.

Inference rules

Temporary hypotheses

Given hypotheses $P_1, \ldots P_n$, you can derive $T \rightarrow S$ in a proof sequence as follows:

- 1. Introduce T as a "temporary hypotheses": Write T as the *n*-th step of the proof sequence, with a justification of "temporary hyp".
- 2. Prove S given T and the hypotheses: Apply derivation rules to steps 1 through n of the sequence to produce steps n + 1 through m, where step m derives S. Indent these steps to indicate that they depend on a temporary hypothesis.
- 3. Derive $T \rightarrow S$, giving as a justification "temp. hyp discharged".

You then continue with the main proof sequence as usual, except that the indented steps (n + 1 through m) cannot be used to derive subsequent steps in the sequence.

Equivalence rule

Expression	Equivalent to	Name/abbreviation	
$((\exists x)A(x))'$	$(\forall x)(A(x)')$	Negation — neg	