Administrivia

- Homework 3 deadline moved to next Tuesday.

Slide 1

Minute Essay From Last Lecture

- Which of the "at the board" approaches seems better?
- No overwhelming majority for either one. Some other alternatives suggested (e.g., small groups, possibly assign problems so each problem gets done by at least one group).

Slide 2

Review/Recap/Overview — Doing (Less Formal) Proofs

- In chapter 1, proofs were like the ones you might have done in a geometry class - very structured, well-defined rules, like a game with a finite number of allowed moves.
- In chapter 2, we use some of what we learned (e.g., De Morgan's law), but

Slide 3

 proofs are less formal. Easier in that there's less detail; more difficult in that what's allowed is not so well-defined.- Focus is meant to be more on "proof obligations" and structure of proof than on details.
(E.g., review/recall wording of minute-essay question (2/07) about proving that there is no largest prime.)

Mathematical Induction — Review/Recap

- Questions usually phrased as "prove that $P(n)$ is true for all integers $\geq n_{0}$ ", where $P(n)$ is some statement about n (equation, not formula).
- Two "proof obligations":
- Base case - usually just n_{0}, but sometimes must include few numbers

Slide 4 right after n_{0} as well. (e.g., Example 24 in section 2.2).

- Inductive step. Notice that what you are proving is an implication.
- Why this works - you are proving base cases and a rule for constructing implications, after which you can use universal instantiation and modus ponens to get results for non-base cases.

Mathematical Induction - Inductive Step Hints

- What generally works, assuming inductive hypothesis is equation $(f(k)=g(k))$:
- Write down one side of equation to be proved $(f(k+1))$.
- Rewrite it so it somehow includes $f(k)$.

Slide 5

- Replace $f(k)$ with $g(k)$, then do algebra to show the whole expression equals $g(k+1)$.
- If proving an inequality, often helpful to use the fact that if $x \leq y$ and $y \leq z$, then $x \leq z$.

Examples - Review

- Section 2.2 problem 31 revisited (we were meant to notice problem 28!).
- "Examples at the board" from last time, revisited.

Slide 6

Recursion and Recursive Definitions

- Idea of recursion closely related to idea of induction - "build on previous smaller cases".
- First look at recursive definitions. To define something recursively:
- Define one or more "base cases".

Slide 7

- Define remaining cases in terms of other ("smaller") cases.

Recursive Definitions - Sequences

- A silly example:

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide $8 \quad$ Try writing down some terms.

- Another example:

$$
\begin{aligned}
& S(1)=1 \\
& S(2)=1 \\
& S(n)=S(n-2)+S(n-1), \text { for } n>2
\end{aligned}
$$

Try writing down some terms. Anyone recognize this one?

Recursive Definitions - Sets

- Example - could define the set of "integer arithmetic expressions" like this:
- Integers are expressions.
- If E and F are integer arithmetic expressions, so are $(E+F)$, $(E-F),(E \times F)$, and (E / F).

Slide 9

Examples?
Notice that this allows us to generate only "sensible" expressions. Notice also that it's a bit more restrictive than we might like.

- We could write similar definitions for the wffs of propositional and predicate logic.
- Notice: To claim that something is in the set you need to be able to show that it's either a base case or can be obtained from a base case by applying one of the "rules" that define the set.

Minute Essay

- None - quiz.

