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Administrivia

• Homework 3 deadline moved to next Tuesday.
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Minute Essay From Last Lecture

• Which of the “at the board” approaches seems better?

• No overwhelming majority for either one. Some other alternatives suggested

(e.g., small groups, possibly assign problems so each problem gets done by

at least one group).
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Review/Recap/Overview — Doing (Less Formal) Proofs

• In chapter 1, proofs were like the ones you might have done in a geometry

class — very structured, well-defined rules, like a game with a finite number

of allowed moves.

• In chapter 2, we use some of what we learned (e.g., De Morgan’s law), but

proofs are less formal. Easier in that there’s less detail; more difficult in that

what’s allowed is not so well-defined.

• Focus is meant to be more on “proof obligations” and structure of proof than

on details.

(E.g., review/recall wording of minute-essay question (2/07) about proving

that there is no largest prime.)
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Mathematical Induction — Review/Recap

• Questions usually phrased as “prove that P (n) is true for all integers ≥ n0”,

where P (n) is some statement about n (equation, not formula).

• Two “proof obligations”:

– Base case — usually just n0, but sometimes must include few numbers

right after n0 as well. (e.g., Example 24 in section 2.2).

– Inductive step. Notice that what you are proving is an implication.

• Why this works — you are proving base cases and a rule for constructing

implications, after which you can use universal instantiation and modus

ponens to get results for non-base cases.
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Mathematical Induction — Inductive Step Hints

• What generally works, assuming inductive hypothesis is equation

(f(k) = g(k)):

– Write down one side of equation to be proved (f(k + 1)).

– Rewrite it so it somehow includes f(k).

– Replace f(k) with g(k), then do algebra to show the whole expression

equals g(k + 1).

• If proving an inequality, often helpful to use the fact that if x ≤ y and y ≤ z,

then x ≤ z.
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Examples — Review

• Section 2.2 problem 31 revisited (we were meant to notice problem 28!).

• “Examples at the board” from last time, revisited.
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Recursion and Recursive Definitions

• Idea of recursion closely related to idea of induction — “build on previous

smaller cases”.

• First look at recursive definitions. To define something recursively:

– Define one or more “base cases”.

– Define remaining cases in terms of other (“smaller”) cases.
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Recursive Definitions — Sequences

• A silly example:

S(1) = 1

S(n) = S(n − 1) × 10, for n > 1

Try writing down some terms.

• Another example:

S(1) = 1

S(2) = 1

S(n) = S(n − 2) + S(n − 1), for n > 2

Try writing down some terms. Anyone recognize this one?
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Recursive Definitions — Sets

• Example — could define the set of “integer arithmetic expressions” like this:

– Integers are expressions.

– If E and F are integer arithmetic expressions, so are (E + F ),

(E − F ), (E × F ), and (E/F ).

Examples?

Notice that this allows us to generate only “sensible” expressions. Notice also

that it’s a bit more restrictive than we might like.

• We could write similar definitions for the wffs of propositional and predicate

logic.

• Notice: To claim that something is in the set you need to be able to show that

it’s either a base case or can be obtained from a base case by applying one

of the “rules” that define the set.
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Minute Essay

• None — quiz.


