
CSCI 1323 February 21, 2012

Slide 1

Administrivia

• Reminder: Homework 3 due today.

Slide 2

Recursion and Recursive Definitions — Review/Recap

• Idea of recursion closely related to idea of induction — “build on previous

smaller cases”.

• First look at recursive definitions. To define something recursively:

– Define one or more “base cases”.

– Define remaining cases in terms of other (“smaller”) cases.

• Last time we looked at recursive definitions of sequences and sets. (Notice

revision to slide about sets.)



CSCI 1323 February 21, 2012

Slide 3

Recursive Definitions — Operations

• Example — factorial.

• Example — multiplication of non-negative integers, defined in terms of

addition.

• Example — (integer) division of a non-negative integer by a positive integer,

defined in terms of subtraction.

Slide 4

Recursive Algorithms

• Recursive definitions of sequences or operations often can be turned into

recursive algorithms with little effort.

• Examples — function to compute n-th Fibonacci number, function to do

division by repeated subtraction.

• Efficiency considerations:

– In terms of computer time/memory usage, recursion is almost always

worse than iteration — but not always, and sometimes not much worse.

– In terms of human effort to get program running correctly, recursion may

be much better.

• Examples in text — selection sort and binary search. Quicksort and

mergesort are other good ones.



CSCI 1323 February 21, 2012

Slide 5

Reasoning About Recursive Algorithms

• A recursive algorithm “works” if:

– It works for the base case(s).

– For other cases, it works assuming the recursive calls work.

– The recursion eventually stops — recursive calls are always “smaller”, and

eventually reduce to base cases.

• We could formalize this as a proof by induction.

Slide 6

Recurrence Relations

• Recall the silly example of defining a sequence recursively:

S(1) = 1

S(n) = S(n − 1) × 10, for n > 1

Expanding out some terms, it seems fairly obvious that an equivalent

definition would be S(n) = 10n−1 — a “closed-form solution” to the

recurrence relation given in the second line of the definition.

• We’ll look at various ways to get from a recursive definition to a closed-form

one, because the latter are easier to compute, but sometimes it will be much

easier to write down the definition recursively.



CSCI 1323 February 21, 2012

Slide 7

Solving Recurrence Relations, Continued

• For the silly example

S(1) = 1

S(n) = S(n − 1) × 10, for n > 1

we guessed a solution of S(n) = 10n−1. Can we verify that this is the same

as the recursive definition? yes, via a proof by induction . . .

• Call this method “expand, guess, verify”.

• Try another example — section 2.5 problem 3.

Slide 8

Solving Recurrence Relations, Continued

• Is there another way? In general, probably not, but there are some formulas

for some frequently-occurring special cases.

• One is “first-order linear” recurrence relations with constant coefficients. If

S(n) = cS(n − 1) + g(n)

then we can show (see textbook for derivation) that

S(n) = cn−1S(1) +
n∑

i=2

(cn−ig(i))

• Apply this to the two problems we did earlier — we should get the same

results.



CSCI 1323 February 21, 2012

Slide 9

Minute Essay

• Consider the following recursive definition of a sequence:

S(1) = 1

S(n) = 10S(n − 1) + 1, for n > 1

What are S(1), S(2), . . . S(5)?

Slide 10

Minute Essay Answer

• The first few terms:

S(1) = 1

S(2) = 11

S(3) = 111

S(4) = 1111

S(5) = 11111


