

- Example factorial.
- Example multiplication of non-negative integers, defined in terms of addition.
- Example (integer) division of a non-negative integer by a positive integer, defined in terms of subtraction.

Solving Recurrence Relations, Continued

- Is there another way? In general, probably not, but there are some formulas for some frequently-occurring special cases.
- One is "first-order linear" recurrence relations with constant coefficients. If

$$S(n) = cS(n-1) + g(n)$$

Slide 8

then we can show (see textbook for derivation) that
$$S(n) = e^{n-1}S(1) + \sum_{i=1}^{n} (e^{n-i}e^{i})$$

$$S(n) = c$$
 $S(1) + \sum_{i=2}^{n} (c - g(i))$

• Apply this to the two problems we did earlier — we should get the same results.

Minute Essay

• Consider the following recursive definition of a sequence:

$$S(1) = 1$$

 $S(n) = 10S(n-1) + 1$, for $n > 1$

What are $S(1), S(2), \ldots S(5)$?

	Minute Essay Answer	١
Slide 10	• The first few terms: S(1) = 1 S(2) = 11 S(3) = 111 S(4) = 1111 S(5) = 11111	