Administrivia

- Reminder: Homework 3 due today.

Slide 1

Recursion and Recursive Definitions - Review/Recap

- Idea of recursion closely related to idea of induction - "build on previous smaller cases".
- First look at recursive definitions. To define something recursively:
- Define one or more "base cases".

Slide 2

- Define remaining cases in terms of other ("smaller") cases.
- Last time we looked at recursive definitions of sequences and sets. (Notice revision to slide about sets.)

Recursive Definitions - Operations

- Example - factorial.
- Example - multiplication of non-negative integers, defined in terms of addition.
- Example - (integer) division of a non-negative integer by a positive integer,

Slide 3

 defined in terms of subtraction.
Recursive Algorithms

- Recursive definitions of sequences or operations often can be turned into recursive algorithms with little effort.
- Examples - function to compute n-th Fibonacci number, function to do division by repeated subtraction.

Slide 4

- Efficiency considerations:
- In terms of computer time/memory usage, recursion is almost always worse than iteration - but not always, and sometimes not much worse.
- In terms of human effort to get program running correctly, recursion may be much better.
- Examples in text - selection sort and binary search. Quicksort and mergesort are other good ones.

Reasoning About Recursive Algorithms

- A recursive algorithm "works" if:
- It works for the base case(s).
- For other cases, it works assuming the recursive calls work.
- The recursion eventually stops - recursive calls are always "smaller", and

Slide 5

 eventually reduce to base cases.- We could formalize this as a proof by induction.

Recurrence Relations

- Recall the silly example of defining a sequence recursively:

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide 6 Expanding out some terms, it seems fairly obvious that an equivalent definition would be $S(n)=10^{n-1}$ - a "closed-form solution" to the recurrence relation given in the second line of the definition.

- We'll look at various ways to get from a recursive definition to a closed-form one, because the latter are easier to compute, but sometimes it will be much easier to write down the definition recursively.

Solving Recurrence Relations, Continued

- For the silly example

$$
\begin{aligned}
& S(1)=1 \\
& S(n)=S(n-1) \times 10, \text { for } n>1
\end{aligned}
$$

Slide 7

we guessed a solution of $S(n)=10^{n-1}$. Can we verify that this is the same as the recursive definition? yes, via a proof by induction ...

- Call this method "expand, guess, verify".
- Try another example - section 2.5 problem 3.

Solving Recurrence Relations, Continued

- Is there another way? In general, probably not, but there are some formulas for some frequently-occurring special cases.
- One is "first-order linear" recurrence relations with constant coefficients. If

$$
S(n)=c S(n-1)+g(n)
$$

Slide 8
then we can show (see textbook for derivation) that

$$
S(n)=c^{n-1} S(1)+\sum_{i=2}^{n}\left(c^{n-i} g(i)\right)
$$

- Apply this to the two problems we did earlier - we should get the same results.

Minute Essay Answer

- The first few terms:
$S(1)=1$
$S(2)=11$
$S(3)=111$
Slide 10
$S(4)=1111$
$S(5)=11111$

