## Administrivia

- Quiz 3 Tuesday. Topics from 2.1 through 2.3 (proofs, proofs by induction).
- Next homework on the Web late today or early tomorrow. Due next Thursday.
- (Not much to say about minute essay from last time - almost everyone got it right.)


## Slide 1

## Solving Recurrence Relations — Review/Recap

- Goal is to take a recursive definition of a sequence and come up with a "closed-form" (non-recursive) definition of the same sequence.
- One method is what textbook calls "expand, guess, verify".
- No other general method (that I know of!), but formulas for some common special cases. We looked at one last time - if the recursive part of the definition is

$$
S(n)=c S(n-1)+g(n)
$$

the solution is

$$
S(n)=c^{n-1} S(1)+\sum_{i=2}^{n}\left(c^{n-i} g(i)\right)
$$

## Another Special Case

- Another case for which there's a formula - two base cases, and the recursive part of the definition depends on the previous two elements ("second-order") in a simple way:

$$
S(n)=c_{1} S(n-1)+c_{2} S(n-2)
$$

## Slide 3

- For problems that fit this case, solution is more complicated (the "guess" part of getting it seems to involve a rabbit and a hat, though verifying it is relatively straightforward). (Next slide.)

Another Special Case - Solution

- First find roots $r_{1}$ and $r_{2}$ of

$$
t^{2}-c_{1} t-c_{2}=0
$$

- and then (if $r_{1} \neq r_{2}$ ) find $p$ and $q$ to solve

Slide 4

$$
\begin{gathered}
p+q=S(1) \\
p r_{1}+q r_{2}=S(2)
\end{gathered}
$$

- and then the formula is

$$
S(n)=p r_{1}^{n-1}+q r_{2}^{n-1}
$$

## Yet Another Special Case

- One more case for which there's a formula is one of interest in analysis of algorithms, especially those that take a "divide and conquer" approach (e.g., quicksort, mergesort, binary search). In math terms, the recursive part is

$$
S(n)=c S(n / 2)+g(n), \text { for } n=2^{m}, n>1
$$

## Slide 5

- For problems that fit this case, the "expand, guess, verify" method produces the following:

$$
S(n)=c^{\log n} S(1)+\sum_{i=\log n}^{n}\left(c^{\log n-i} g\left(2^{i}\right)\right)
$$

## Examples

- Word problem: problem \#18 in section 2.5 of textbook.
- Second-order: Fibonacci sequence (problems 24 in 2.4, 31 in 2.5).
- Divide-and-conquer: practice \#25 in textbook. (Next time.)


## Slide 6



