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Administrivia

• Homework 5 on the Web; due the Tuesday after the break.

• I will make sample solutions for all assignments available in hardcopy before

the exam. (I trust you not to pick up one for an assignment you haven’t turned

in but plan to.)

• (Review minute essay from last time.)

Slide 2

Proving Program Correctness — Recap

• Once you’ve written a program, want to have some confidence that “it works”.

• What do you mean “it works”? Informally? Formally, “meets its specification”

(more later).

• How do you show it works? As noted last time, testing can show the presence

of bugs but not their absence.

• Is there another way to “increase your confidence” in the program? “Formal

methods” . . .

• Idea of formal methods is to give a mathematical proof that a program does

what it’s supposed to do.

• For non-trivial programs, usually a lot of work, though if the program is

“important” enough, might be worthwhile. Also, key ideas can be effective

even without complete proofs (“informal formal methods”?).
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Program Specifications

• Before we can prove that a program “works”, we have to define what that

means — “specification”.

• For many programs (the ones we’ll talk about here), we care that the program

produces the right output for all allowed inputs. So we can write a

specification in terms of “precondition” and “postcondition”. E.g., for a function

sqrt that takes a double x as input and returns a double, we could

have:

Precondition: x ≥ 0.

Postcondition: For return value y, y ≥ 0 and y2 = x. (Or, more precisely,

y2 ≈ x, and we would have to define what we want ≈ (approximately equal)

to mean.)
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Program Specifications, Continued

• This is trivial? Consider the following proposed specification for a sorting

function with two inputs A (array of integers) and n (size of A).

Precondition: A is of size n, n ≥ 0.

Postcondition: (∀i)(((0 < i < n) → A[i − 1] ≤ A[i])

• Okay? (No.)
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Program Specifications and Correctness

• Once we have a precondition and postcondition, “the program is correct”

means “if we start in a state where the precondition is true, we end in a state

where the postcondition is true.”

• We’ll define rules for establishing correctness for assignment, if/then/else,

sequential composition, and “while” loops. That, it turns out, is enough.
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Specifications — Formal View

• If we have

– X — set of input variables for program P

– P (X) — set of output variables for P

– Q(X) — precondition

– R(X,P (X)) — postcondition

then we define “P is correct” to be

(∀X)(Q(X) → R(X,P (X)))

• Traditionally write this using a “Hoare triple” (C. A. R. Hoare, 1968 CACM

article)

{ Q } P { R }

with implicit quantification over all values of inputs.
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How to Prove that Program Meets its Specification?

• First observe that we can build up all programs from a few basics:

– Assignment.

– Conditional (if/then/else).

– Sequential composition.

– Loops (while).

• So we just (?!) have to give rules for these basics, and then in principle . . .
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Sequential Composition

• “Sequential composition”? Fancy name for “first do this, then do that.”

• Rule is: For two programs P1 and P2

If we have { Q } P1 { R1 }

and { R1 } P2 { R }

then we can derive { Q } P1;P2 { R }

• This seems plausible, no? and we could prove it with predicate logic.
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Assignment

• Oddly enough, this one is tricky.

• Rule is this:

We can derive { R1 } x := e { R2 }

where R1 is R2 with all occurrences of x replaced by e.

• This makes sense, no? If something is true about e, and then we assign e to

x, then the something is true about x.
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Strengthening Preconditions, Weakening Postconditions

• Two more rules:

If we have { Q } P { R }

then for “stronger” precondition Q1 (i.e., Q1 → Q)

we can derive { Q1 } P { R }

and for “weaker” postcondition R1 (i.e., R → R1)

we can derive { Q } P { R1 }

• This also should make sense, and we could prove it. Also, it can be helpful in

applying the rule for sequential composition when the postcondition /

precondition pairs don’t quite match up.
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Conditionals

• Putting off loops for now, we need one more rule, for if/then/else.

• Rule is: If we have program S of the form

if B then

P1

else

P2

end if

and we have { (Q ∧ B) } P1 { R } and { (Q ∧ B′) } P2 { R }

then we can derive { Q } S { R }

• Again, this should make sense, and we could prove it.
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Example

• Try an example — silly program (call it S) to compute minimum of two

elements:

if x < y then

z := x

else

z := y

end if

• Show using rules for assignment and conditionals that

{ true } S { z = min(x, y) }

and we probably should make the postcondition more precise/detailed, thus:

(z ≤ x) ∧ (z ≤ y) ∧ ((z = x) ∨ (z = y))
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Examples of Less Formal Use

• Rule for sequential composition leads to “programming with assertions” — at

“interesting” points in the program, use to document/check what you know to

be true at that point. Example: Program that first sorts an array, then

repeatedly performs binary search. Could use assertion to document that

array is sorted.

• Rule for conditionals can also be used informally: Code for “if” branch only

has to work if condition is true; code for “else” branch only has to work if

condition is false. Example: Function to compute root(s) of quadratic

equation.
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Sidebar: A Puzzle

• Suppose you have a jar containing white marbles and black marbles, plus an

unlimited supply of extra black marbles, and you do the following:

1. Select two marbles.

2. If they’re the same color, discard them both and put a black marble in the

jar. If they’re different colors, discard the black one and put the white one

back in the jar.

3. If there are at least two marbles in the jar, repeat.

• Does this end? If it does, what if anything can you say about the marble(s) in

the jar when it ends?

• (Similar ideas behind “metric” for loop termination and “invariant” for loop

correctness.)
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Program Correctness and Loops

• We’ll write loops in this form

while B do

P

end while

After the loop terminates (assuming it does), what do we know about B?

True or false?

• We also need the notion of a “loop invariant” — a predicate that, if true before

we execute the loop body is true again after. More formally, Q is an invariant

for the above loop if

{ Q ∧ B } P { Q }

• Now we can state the rule for loops . . .
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Program Correctness and Loops

• For program P1 as follows

while B do

P

end while

and Q an invariant of the loop in P1, we can say that

{ Q } P1 { Q ∧ B′ }

• We could prove this using induction (on the number of trips through the loop).

• The idea is to choose Q such that the postcondition in the above triple

(Q ∧ B′) is useful — i.e., helps establish something we want to be true

after the loop.
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Minute Essay

• If we want to have { R } x := x ∗ 2 { x < 16 }, what should R be?
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Minute Essay Answer

• R should be (x ∗ 2) < 16, i.e., x < 8


