Administrivia

- (None.)

Slide 1

Counting (Combinatorics)

- "Counting" sounds too trivial for a college-level course, right? but consider situations in which you want to know how many things there are in a set but don't actually want to list them all. We will look at several ways to "count" without actually enumerating.

Slide 2

- (But, but, if you know how to write programs, why not just actually count ... ? or could there still be too many to feasibly list?)

Multiplication Principle

- If there are N_{1} outcomes for event 1 and N_{2} outcomes for event 2, how many outcomes are there for the sequence "event 1 , then event 2 "?
- Pictorially - draw a tree. Clear that there are $N_{1} \times N_{2}$.
- Can easily extend by induction to sequences of more than two events.

Slide 3

- Example: If a password consists of 4 decimal digits, how many are there?
(And if we allowed 10 seconds to try each one, how long would it take to try them all?)
- Example: If a license-plate number is 3 decimal digits followed by three alphabetic characters, how many are there?

Addition Principle

- If there are N_{1} outcomes for event 1 and N_{2} outcomes for event 2 (and the sets of "event 1 outcomes" and "event 2 outcomes" are disjoint), how many outcomes are there for the event "event 1 or event 2 "?
- Fairly easy to see that there are $N_{1}+N_{2}$ possibilities in all.

Slide 4 - Can also easily extend by induction to combinations of more than two events.

- Example: If you have to choose an elective from either the Department of Esoteric Pursuits (which offers 10 of them) or from the Department of Life Skills (which offers 6 of them), how many choices are there in all (assuming no courses are cross-listed)?

Combining the Addition and Multiplication Principles

- Example: How many phone numbers are there that have either area code 210 or area code 512?
- Example: How many 7-digit phone numbers have at least one repeated digit?

Slide 5

Decision Trees

- Sometimes it's useful to represent a sequence of choices as a "decision tree" and explicitly count leaf nodes.
- Example: How many ways are there to get 4 coin tosses with no sequences of three heads or three tails?

Slide 6

More Examples

- Section 3.2 problems 45, 46, 60.

Slide 7

Principle of Inclusion/Exclusion

- Motivating(?) example:

You take a poll of how many people support propositions A and B. You find that 10 of them support $A, 20$ support B, and 5 support both A and B. How many support either A or B ?

Slide $8 \quad$ - Using set notation, with $|S|$ meaning the number of elements in S :
Given $|A|=10,|B|=20$, and $|A \cap B|=5$,
what is $|A \cup B|$?

- We can use the addition principle to derive

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

(Intuitive idea is that we count everything in both sets, and in doing that we count some things twice, so we must correct.)

Principle of Inclusion/Exclusion, Continued

- What if there were three propositions/sets? Can we derive a rule?
- Sure . . . (next slide).

Slide 9

Principle of Inclusion/Exclusion, Continued

- Rule for three sets is
$|A \cup B \cup C|=|A|+|B|+|C|-|B \cap C|-|A \cap B|-|A \cap C|+|A \cap B \cap C|$
- Intuitive idea:

Slide 10
Count all the A's, all the B's, all the C's.
A\&B's, B\&C's, and A\&C's have been counted twice; A\&B\&C's have been counted three times.

Subtract counts of A\&B's, B\&C's, and A\&C's; now A\&B\&C's have been counted zero times.

Add count of A\&B\&C's.

- Formally, derive from rule for two sets and rules for set operations.

Principle of Inclusion/Exclusion, Continued

- There's a pattern, captured in general form of rule (p. 228). (In another textbook - "A Ghastly Formula".)
- For more interesting examples (most beyond the scope of this course), Google "inclusion/exclusion principle".

Pigeonhole Principle

- Idea is that if you have n items placed in k bins, and $n>k$, then at least one bin has more than one item.

Converse is that if no bin contains more than one item, n can be at most what?

Slide 12
More general version - if you have k bins and more than $m k$ items, there's at least one bin with more than m items.

- Example - section 3.3 problem 22.

Pigeonhole Principle, Continued

- Another example (discovered on a Web page at Stanford, no longer available):

If A is a set of 10 integers in the range 1 to 100 , show that there are at least two distinct and disjoint subsets of A that have the same sum.
(Idea is to count number of possible subsets and also figure out range of potential sums. If more subsets than possible sums ...)

Permutations

- We might want to know how many ways we can choose an ordered sequence of r objects, chosen from n possibilities with no repeats. Call this $P(n, r)$. Example: How many 7-digit phone numbers have no repeated digits?
- Can we come up with a general formula? (Of course. Let's derive one.)

Slide 14

- Look at some boundary cases $-r=n, r=0, r=1$, etc. (We'll need to agree that $0!=1$.)

Combinations

- Or we might want to know how many ways we can choose an unordered collection of r objects, chosen from n possibilities with no repeats. Call this $C(n, r)$.
Example: How many ways can we draw 5 cards from a deck of 52 ?
Slide 15
- Can we come up with a general formula? (Of course. Let's derive one.)
- Again look at some boundary cases $-r=n, r=1, r=0$.
- (Another common notation for this is $\binom{n}{r}$ (" n choose r ").).

Minute Essay

- None - quiz.

