

Addition Principle
If there are N₁ outcomes for event 1 and N₂ outcomes for event 2 (and the sets of "event 1 outcomes" and "event 2 outcomes" are disjoint), how many outcomes are there for the event "event 1 or event 2"?
Fairly easy to see that there are N₁ + N₂ possibilities in all.
Can also easily extend by induction to combinations of more than two events.
Example: If you have to choose an elective from either the Department of Esoteric Pursuits (which offers 10 of them) or from the Department of Life Skills (which offers 6 of them), how many choices are there in all (assuming no courses are cross-listed)?

	Principle of Inclusion/Exclusion
•	Motivating(?) example: You take a poll of how many people support propositions A and B. You find that 10 of them support A, 20 support B, and 5 support both A and B. How many support either A or B?
•	Using set notation, with $ S $ meaning the number of elements in S : Given $ A = 10$, $ B = 20$, and $ A \cap B = 5$, what is $ A \cup B $?
•	We can use the addition principle to derive $ A + B = A + B = A \cap B $
	$ A \cup B = A + B = A + B $ (Intuitive idea is that we count everything in both sets, and in doing that we count some things twice, so we must correct.)

Pigeonhole Principle
Idea is that if you have *n* items placed in *k* bins, and *n > k*, then at least one bin has more than one item.
Converse is that if no bin contains more than one item, *n* can be at most — what?
More general version — if you have *k* bins and more than *mk* items, there's at least one bin with more than *m* items.
Example — section 3.3 problem 22.

