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Administrivia

• Reminder(?): Quiz 5 Tuesday. Likely topic is sets and counting (chapter 3 up

to but not including probability).

• Homework(s) on chapter 3 coming soon.

• (Review minute essay from last time.)
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Probability — Not-Equally-Likely Outcomes

• One approach — extend previous definition (size of “event” divided by size of

sample space) by adding duplicates to sample space for outcomes that are

more likely.

• Another approach — “probability distribution”: For each x in sample space S,

assign x a probability p(x), such that

0 ≤ p(x) ≤ 1, for all x ∈ S
∑

x∈S

p(x) = 1

• Now for event E (E ⊆ S), we have

P (E) =
∑

x∈E

p(x)

• Note that equally-likely-outcomes definition is a special case of the above.
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Conditional Probability

• We could also consider, for two possibly related events E1 and E2, how likely

it is that E2 happens given that E1 has happened — “conditional probability”:

P (E2|E1) =
P (E1 ∩ E2)

P (E1)

Intuitive idea is that here the “sample space” is limited to E1.

• If it turns out that P (E2|E1) = P (E2), we call E1 and E2 “independent

events”. In this case, we can derive that P (E1 ∩ E2) is — what?

• Notice resemblance between this and multiplication principle, and between

rule for P (E1 ∪ E2) and addition principle.
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Examples

• If a fair coin is tossed four times, what’s the probability of getting four heads?

What’s the probability that the last toss is a head given that the first three are

heads?
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Expected Value

• You probably know about computing weighted averages — from classes in

which your grade is computed as, e.g., 50% exams, 20% homework, etc.

• “Expected value” is a generalization of this: Given a sample space S, a

“random variable” X (function from S to R), and a probability distribution p,

define expected value of X thus:

E(X) =
∑

x∈S

X(x)p(x)

Intuitive idea — “average” value, where the average is weighted by how likely

the different values are.
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Average-Case Analysis of Algorithms

• Previously we talked about estimating worst-case execution time of

algorithms — amount of “work” as a function of input size.

• We could also talk about average-case amount of work, based on idea of

expected value: Sample space is set of all possible inputs. For input x, X(x)

is the amount of work for x and p(x) is the probability of x.

Example — example 72 in textbook.
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Binary (and other) Relations — Preview

• Idea of a binary relation is to express relationship between pairs of elements

of a set. Some interesting special cases:

– Partial orderings — useful in working out how we could put things “in

order”, e.g., a set of tasks with (some) ordering dependencies.

– Functions (of 1 variable).

• Generalization — “n-ary relation”, also with interesting special cases:

– Functions of more than 1 variable.

– Relational databases.
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Minute Essay

• If a fair coin is tossed four times, what’s the probability of getting two heads

and two tails given that there’s at least one head and at least one tail?
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Minute Essay Answer

• Sample space has 16 elements (different outcomes of flipping coin four

times).

If E1 includes outcomes with at least one head and at least one tail, P (E1)

is 14/16, because E1 is all of the sample space except the “all heads” and “all

tails” outcomes.

If E2 includes outcomes with two heads and two tails, P (E2) is 6/16,

because there are C(4, 2) = 6 ways to choose the two tosses that come up

heads.

E1 ∩ E2 is just E2.

So from definition, P (E2|E1) = (6/16)/(14/16), i.e., 6/14.


