

- ρ is *reflexive* if $x \rho x$ for all $x \in S$.
- ρ is symmetric if $(x \rho y) \rightarrow (y \rho x)$ for all $x, y \in S$.
- ρ is transitive if $(x \ \rho \ y) \ \land \ (y \ \rho \ z) \ \rightarrow \ (x \ \rho \ z)$ for all $x, y, z \in S$.
- ρ is antisymmetric if $(x \ \rho \ y) \ \land \ (y \ \rho \ x) \ \rightarrow \ (x = y)$ for all $x, y \in S$.
- Slide 3
- Can combine these in interesting ways ...

Uses of Partial Orderings One thing a partial ordering (reflexive, symmetric, transitive relation — think "generalized ≤") can express — ordering constraints among tasks. We'll look at one application — topological sorting. PERT charts discussed in book.

