
CSCI 1323 April 19, 2012

Slide 1

Administrivia

• Reminder: Quiz 6 Tuesday.

• Reminder: Homework 7 due today.

• Next homework should be on the Web soon. I will send mail. Due last day of

class.

Slide 2

Order of Magnitude of Functions

• By now you’ve probably heard “this is an O(N) algorithm”, etc., many times.

Here we’ll define it formally.

• First: When we talked about analysis of algorithms (chapter 2), we came up

with estimates of “total work” of the algorithm as a function of size of input

(“problem size”). Useful and interesting, but a bit fine-grained — what we

usually care about is behavior as problem size gets very big.

• So — idea is to come up with an “order of magnitude” for functions,

analogous to “order of magnitude” for numbers. If the functions for two

algorithms have the same order of magnitude, the functions are in some

sense about equally fast/slow.

• Example: If you have two algorithms for processing an image with N pixels,

one that takes time proportional to 1000N and one that takes time

proportional to time N2, which do you pick? (Does the size of N matter?)



CSCI 1323 April 19, 2012

Slide 3

Order of Magnitude of Functions, Continued

• How to determine an order of magnitude for functions?

If we look at graphs of functions, we might notice that we can classify them

into groups based on their “shape”.

For nondecreasing functions, we also notice that some shapes “grow” faster

than others.

(Compare x2, 10x2, x3, etc.)

• Idea is that we want functions that have the same shape to have the same

order of magnitude.

Slide 4

Order of Magnitude of Functions, Continued

• Formal definition:

Write f = Θ(g) to mean that f and g have the same order magnitude.

Define to be true iff there are positive constants n0, c1, c2 such that for all

x ≥ n0

c1g(x) ≤ f(x) ≤ c2g(x)

In other words, these functions are roughly proportional to each other.

• Can guess values c1, c2 and more or less show that they work by plotting

resulting curves — but to really show that the definition holds, must do

algebra to show. (Example.)



CSCI 1323 April 19, 2012

Slide 5

“Big-O Notation”

• The O(f(N)) you see in computer science is similar, but it’s a “less than or

equal” rather than a “strictly equal” — i.e., f(N) = O(g(N)) means f ’s

order of magnitude is no bigger than g’s (and might be less).

Formally, true iff there are positive constants n0 and c such that for all

x ≥ n0

f(x) ≤ cg(x)

• Interesting (?) to observe that Θ is an equivalence relation, and O is a partial

ordering.

Slide 6

Order of Magnitude of Functions, Continued

• So we have a way to compare orders of magnitude of functions, with an

“equals” (Θ) and a “less-than-or-equal-to” (O).

• In general, function’s order of magnitude determined by fastest-growing term.

Some categories of interest:

– x2 grows faster than x, x3 faster than x2, etc. x2 and cx2 “the same”.

– logb x grows more slowly than x.

– bx grows faster than all polynomials.

– xx grows faster than all bx.



CSCI 1323 April 19, 2012

Slide 7

Graphs — Overview

• In some contexts, “graph” means a plot of a function, other pictorial

representation of data.

• In other contexts, it’s an abstract idea meant to represent relationships among

a set of things. Examples:

– Hasse diagrams of chapter 4.

– Airline route maps.

– Simplified maps showing driving distances between cities.

Common idea — set of things (set elements, cities) and a notion that some

pairs of them are connected somehow. Details we don’t care about have

been “abstracted out”.

Slide 8

Graphs — Definition

• Formal definition (undirected graph):

– Nonempty set N of nodes (vertices).

– Set A of arcs (edges).

– Function f : A → {{x, y}|x, y ∈ N} (unordered pairs of nodes).

Notice that we can have “loops” and also “parallel arcs”.

• Variations/extensions:

– Directed graph — edges are ordered pairs (i.e., “one-way”).

– Labeled graph — each vertex has some associated info (“label”).

– Weighted graph — each edge has some associated info (“weight”).



CSCI 1323 April 19, 2012

Slide 9

Graphs — Terminology

• Adjacent nodes (arc from one to the other).

• Loop, parallel arc.

• Simple graph (no loops or parallel arcs).

• Complete graph (every pair of nodes adjacent).

• Path (sequence of arcs), connected graph.

• Cycle, acyclic graph.

Slide 10

Isomorphic Graphs

• What we care about is the relationship between nodes and arcs, not exact

visual representation.

• Can formalize this as “isomorphism” — two graphs are isomorphic if one is

just a “relabeling” of the other.

• Formal definition is in terms of one-to-one functions, one from nodes of graph

G1 to nodes of graph G2 and one from arcs of graph G1 to arcs of graph

G2. Idea is that if an arc connects two nodes in G1, the corresponding arc in

G2 connects the corresponding nodes.



CSCI 1323 April 19, 2012

Slide 11

Computer-Friendly Representation of Graphs

• For humans, representing graphs pictorially usually works well. For

computers, other representations work better.

• Key idea is to come up with a way to represent the essential information —

set of nodes and which ones are connected.

Slide 12

Adjacency Matrices

• Idea is to put the n nodes in some (arbitrary) order and define an n-by-n

matrix A such that Aij is the number of arcs connecting node i and node j.

• For an undirected graph, what property does this matrix have? that it might or

might not have for a directed graph?

• Variation: For a weighted graph with no parallel arcs, we could let Aij be the

weight of the arc from node i to node j.



CSCI 1323 April 19, 2012

Slide 13

Adjacency Lists

• Idea is to again put n nodes in some arbitrary order, but rather than a matrix

define an array of n lists, one for each node, with the list for node i containing

all nodes j that are adjacent to node i. Parallel arcs mean “duplicate” entries.

Slide 14

Adjacency Matrix Versus Adjacency List

• Which uses less space?

• Which makes it faster to answer the question “is node i adjacent to node j?”



CSCI 1323 April 19, 2012

Slide 15

Minute Essay

• Which of the following functions are O(N2)?

g(N) = 100N2 + N − 1000

h(N) = N3

• Which of the following functions are O(2N )?

f(N) = 2N − 5

h(N) = N !

Slide 16

Minute Essay Answer

• O(N2)?

g(N) = 100N2 + N − 1000 — yes

h(N) = N3 — no

• O(2N )?

f(N) = 2N − 5 — yes

h(N) = N ! — no


